

Skeletons and the
Parallel Programming Challenge

Murray Cole

Overview

● The Parallel Programming Challenge

● Skeletons to the Rescue?

● Current work in Edinburgh

Parallel Programming Challenge

Mainstream Parallelism

● Parallelism is now a mainstream reality
– Chip manufacturers' roadmaps now look to

increase core count rather than clock rate

(clocks may slow down to save energy)

– GPGPU devices offer massive on-die

parallelism (with SIMD-like constraints)

– Soon even on-chip manycore will take on

aspects of “distributed” parallelism (eg Intel's

Single Chip Cloud Computer)

● We may have three or four layers of parallelism

Haven't we heard this before?
● HPC parallelism has sought a solution for many

years, but has ended up “making do” with MPI,
OpenMP (and now OpenCL/CUDA).

– These are expert-labour-intensive, awkward to

interface and produce code which is not very

performance portable.

● This time we are in the mainstream. This
makes it a big deal!

– Without a productive solution, we will not be

able to use the available resources effectively.

– Intel and Microsoft may go bust....

Skeletons to the Rescue?

Skeletons to the Rescue?

● Key observation: Many parallel applications
involve customised instances of generic
algorithmic patterns. Let's abstract and
package these.

– Farm, Pipe, D&C, Stencil, DSLs...

● Separate software productivity layer
(instantiation and composition of skeletons)
from expert performance programming layer
(skeleton implementation, exploiting knowledge
of constrained computational structure and
target architecture).

Skeletons to the Rescue?

● This approach becomes even more appealing
in the era of multilayer parallelism:

– Application programmer is happy not to have to

write the coordination glue (in different models!)

– Expert programmer is happy that the application

programmer has been prevented from writing

the coordination glue and overspecifying the

implementation.

● If we can demonstrate that this works and is
widely applicable, then we win a very big prize.

Status Report

● Skeletons research has been active for 20+
years. Are we having any impact? Is the wider
world starting to think the same way?

● How can we achieve greater impact?

Is anybody listening?

● In a broad sense, yes
– MapReduce

– Intel TBB / Microsoft Task Parallel Library

– MPI collectives? OpenMP loop directives?

– DSLs like StreamIt?

– Mattson et al book on Patterns, Our Pattern

Library ...

● But these cover a rather small set of patterns.
Is that it?

Achieving Greater Impact

● Look at Parallel Benchmarks?
– Splash, NAS PB, SPEC OMP, SPEC MPI,

Parsec, Lonestar, Mediabench

– Non-trivial to convince, since we rewrite the

source, but greater credibility if we achieve it?

– Do these exhibit skeletal structure? Lots of

farms, bag-of-tasks, stencils, some simple D&C,

some pipelines, lots of irregularity.

● Demonstrate multi-layer performance portability

Current Work in Edinburgh

Current Work in Edinburgh

● We are trying to exploit the “skeletons as
providers of structural information” angle, to
demonstrate skeleton-enabled performance
optimisations.

● We plan to combine this work with that of our
machine-learning-led autotuning group, to
improve transparent performance portability.

● Initial case studies: a worklist skeleton (on
NUMA transactional memory) and a stencil
skeleton (exploiting OpenCL for GPUs).

Forget about parallelism

Autotuning – Basic Idea

● Assumption: If a program will run for a very long
time, or very many times, it is worth spending a
long time optimising it.

● Given
– Source program S, including a number of tuning

knobs (eg tiling controls, block sizes, loop re-

orderings, alternative algorithms ...);

– A target machine M and compiler C

● Find settings for each knob which optimise the
performance of S when compiled by C for M.

Autotuning – Basic Idea

Source
Autotuner
 (M)

Tuned
Source Compiler

M

Autotuning – Basic Idea

● Principle: If a program will run for a very long
time, or very many times, it is worth spending a
long time optimising it.

● Given
– Source program S, including a number of tuning

knobs (eg tiling controls, block sizes, loop re-

orderings, alternative algorithms ...);

– A target machine M and compiler C

● Find settings for each knob which optimise the
performance of S when compiled by C for M.

Autotuning – Basic Idea

● Principle: If a program will run for a very long
time, or very many times, it is worth spending a
long time optimising its compilation.

● Given
– Source program S, including a number of tuning

knobs (eg tiling controls, block sizes, loop re-

orderings, alternative algorithms ...);

– A target machine M and compiler C

● Find settings for each knob which optimise the
performance of S when compiled by C to M.

Where do these come from ?

Autotuning – Basic Idea

● Principle: If a program will run for a very long
time, or very many times, it is worth spending a
long time optimising its compilation.

● Given
– Source program S, including a number of tuning

knobs (eg tiling controls, block sizes, loop re-

orderings, alternative algorithms ...);

– A target machine M and compiler C

● Find settings for each knob which optimise the
performance of S when compiled by C to M.

Where do these come from ?

How do we search for these?

Simplistic Autotuning

● Application programmer (or for a library, the
expert library programmer) explicitly indicates
the tuning knobs.

● Enumerate, compile and run all points in the
program space implied by the tuning knobs,
and pick the best.

● Repeat every time the architecture changes.
● This is what libraries like ATLAS and FFTW do.
● But what if the search space gets too big?

(some knobs may be numeric)

Avoiding the Search Space

● One approach is for the programmer to embed
heuristics which capture the right decisions
explicitly within the source code:

if (someSize > THRESHOLD) {
 techniqueA;
} else {
 techniqueB;
}

● This is difficult, particularly if we need to
capture relationships between tuning knobs,
and heuristics are probably machine-specific.

Pruning the Search Space

● An alternative is to try a “Machine Learning”
approach, in which we try to learn (ie
statistically correlate) the correct tuning
decisions for a given C and M

● Principle: source S will respond well to knob
settings which produced good results for other
previous programs which are “similar” to S.

if (CONDITION TO BE LEARNED) {
 techniqueA;
} else {
 techniqueB;
}

Autotuning – Basic Idea

Source
Tuned
Source Compiler

M

Autotuner
 (M)

Database
Of Previous
Programs

Pruning the Search Space

● An alternative is to try a “Machine Learning”
approach, in which we try to learn the correct
tuning decisions

● Premise: program S will respond well to knob
settings which produced good results for other
previous programs which are “similar” to S.

if (CONDITION TO BE LEARNED) {
 techniqueA;
} else {
 techniqueB;
}

How do we capture similarity?

Features

● In Machine Learning terms, we have a
classification task, requiring us to partition the
set of programs (possibly + input/size) by
responsiveness to tuning knob settings.

● We choose a set of “features” whose values will
act as abstract representations of programs.

● Typically we will use a mixture of static and
dynamic features, eg basic block size, branch
complexity, data sizes, loop counts, cache
behaviour....

● Finding a good feature set is hard.

Machine Learning Autotuner

S (f1, f2, f3, … fn)

Feature
Vector

S
P
E
C
I
A
L
I
S
E

(k1, k2, … km)

Tuning
Settings

A
N
A
L
Y
S
E

A
N
A
L
Y
S
E

A
S
S
O
C
I
A
T
E

DB

S'

The Box of Tricks

● Various techniques, all of the form
– Learning phase: take a collection of programs

and compile and run these at length on the
target machine, gathering statistics relating
features and tuning settings to quality of
outcome. (Slow, but one-off and automated)

– Application phase: take a new program P,
deduce its feature vector, classify it against
learned data and select tuning settings. (Fast!)

● New machine? Learn again.....automated!

Success Stories

● Rapidly Selecting Good Compiler Optimizations
using Performance Counters, Cavazos,
O'Boyle et al, CGO 2007.

– Sequential C programs from SPEC

– Knobs: gcc flags

– Features: various hardware performance

counters (ie dynamic), cache hits, loop counts,

branch predictions

● 17% improvement over “highest” opt. setting

Success Stories

● Mapping Parallelism to Multi-cores: a Machine
Learning Based Approach, Wang and O'Boyle,
PPoPP09.

– OpenMP programs (parallel for) targeting
Xeon/Cell multicore

– Knobs: loop scheduling policy, #threads

– Features: (Static) instruction type counts,
Dynamic) profile counters as above

– 37% improvement over OpenMP default

Success Stories

● A Case for Machine Learning to Optimize
Multicore Performance. Ganapathi et al,
HotPar09.

– Hand annotated stencil codes on multicore

– Knobs: #threads, blocking, prefetching

– Features: The usual suspects....

– “up to” 18% improvement (run time) over expert

Now consider parallelism

Autotuning Parallel Programs

● If we were to consider Machine Learning
autotuning of general parallel programs there
would be two big issues:

– How do we find appropriate tuning knobs?

– How do we find a relevant features?

Skeletons to the Rescue (we hope)

Skeletons and Autotuning

● How do we find appropriate tuning knobs?
– This becomes the expert programmer’s

 task. The tuning knobs are embedded in the

 implementation of the skeleton.

● How do we find relevant features?
– This is still hard. The constrained nature of

 skeletons may make it easier, but the fact that

 we are now dealing with classes of program

 may make it harder.

Case Study: A Worklist Skeleton

● Derived from transactional memory, irregular
parallelism oriented benchmarks STAMP and
Lonestar, (by PhD student Fabricio Goes)

– A bag of tasks (the worklist).

– An irregular, dynamic graph of data points.

– Execute tasks in parallel (any order), possibly

generating new tasks, until all done

– Task may update point and its neighbours.

– Suitable for Transactional Memory: tasks may

but typically don’t conflict, need to be careful

Case Study: A Worklist Skeleton

● Tuning knobs (multicore implementation)
– Privatized Worklists with stealing (or not)

(reduce contention, reduce abort ratio?)

– Helper threads to enable prefetching (more
productive use of cores once natural
parallelism is exhausted)

– Transactional granularity (how many tasks per
 transaction?)

– Abort policy (can choose whether to retry with
a different task)

Case Study: A Worklist Skeleton

● Search space exploration
– 16 core SMP, various STM systems

– Four applications from the STAMP set

– Distributed work pool is a good idea in general

– Other optimizations vary in their effectiveness

(both alone and in combination) from app to app

– Next challenge will be to learn which features

can determine the right choice

Case Study: A Stencil Skeleton

● (PDRA Chris Fensch)
● Applications in Simulation, Image Processing ...

– Multi-dimensional cartesian data space

– Each point hosts the same typed fields

– Use a “stencil” defining a fixed
neighbourhood of “close” points which will
contribute to local computations

– Iteratively, and in lockstep, apply stencil ops at
every point in the space

– Terminate after some number of iterations, or
upon reaching some condition, determined by
combining state at each point.

Case Study: A Stencil Skeleton

● Initial goal: allow targeting of both multicore and
GPU architectures

– Using OpenCL as the implementation medium

allows us to target both models: the skeleton

hides the memory management code which

complicates OpenCL

– Using OpenCL for the app programmer’s

interface (but only sequential pointwise code)

allowed the OpenCL compiler to generate

good SSE aware object code

Case Study: A Stencil Skeleton

● Next challenge: tuning knobs
– Data layout (“array of structs”, “struct of

arrays”, other communication/cache/GPU
friendly layouts)

– Tiling factors (how to distribute and traverse
the implied iteration space)

– Layers of parallelism (use/don't use multiple
nodes, multiple cores, GPU)

– Numbers of processes, threads

Summary

● Any technology which makes a contribution to
the provision of productive parallelism which is
transparently performance portable across
multiple layers can make a big impact.

● Skeletons, or at least skeleton principles, may
be such a technology, but we need to push
forward now, demonstrating applicability to real
problems, or at least credible benchmarks.

● Slogan:

 “abstraction + specialisation = performance”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

