
1/ 28

From DSL to HPC Component-Based Runtime:
A Multi-Stencil DSL Case Study

Julien Bigot, Hélène Coullon, Christian Perez

INRIA team Avalon
Maison de la simulation (CEA)

WOLFHPC 2015 - 16th November 2015

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study



2/ 28

Motivation

+ Domain Specific Languages

I Separation of concerns (domain/implementation)

I Easy language for the user

I Implicit optimizations

I Implicit parallelization

- Domain Specific Languages

I Difficulties deported to the DSL designer
I Low level high performance programming
I Maintainability and portability

I As many DSLs as domains
I DSL composition ?
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Motivation

Component models

I Divide an application into several independent black boxes

I Each component defines its interactions with outer world

I Application = Assembly of components

+ Component models

I Maintainability through separation of concerns

I Code-reuse and productivity

I Dynamic assembly of components
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Motivation

What if a DSL produces a component-based runtime ?

I Is it feasible ?

I Is it efficient ?
I Does it improve issues of DSLs ?

I maintainability
I portability
I productivity

Let’s take a useful example : the Multi-Stencil Language !
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Multi-Stencil Language Overview Compiler Evaluation Conclusion and perspectives

Multi-Stencil Language

Numerical simulation = Multi-Stencil application

Partial Differential Equations
∂u(x,y,t)

∂t
= ∂2u(x,y,t)

∂x2 + ∂2u(x,y,t)

∂y2

+ specific behavior for

boundary conditions

Mesh
Time iterations

Time and space

discretization

+

Explicit
numerical schemes

stencils

Step by step approximation

of the phenomena

Numerical methods

Finite difference/volume/elment
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Multi-Stencil Language

Time and Mesh

Time
At each time iteration of the simulation are applied the
computation kernels of the application.

Mesh

I A Mesh is a connected undirected graph M = (V ,E ) without
bridges

I Mesh entities are a subset of V ∪ E

Mesh Cells Edgex
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Multi-Stencil Language

Data and Computation Kernels

Data
Data is a set of numerical values, each one attached to a given
mesh entity

Computation kernel

I Set of data read for the computation
I Each one associated to a stencil shape

I Data written by the computation

I A numerical expression
I A computation domain

I Subset of mesh entities
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Multi-Stencil Language

Multi-Stencil program

MSP(T ,M, E ,D,∆, Γ)

I T the set of time iterations to tun the simulation

I M the mesh of the simulation

I E the set of mesh entities

I D the set of computation domains

I ∆ the set of data

I Γ the set of computations

= the six sections of a Multi-Stencil Language program !
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Multi-Stencil Language

Example

Mesh Cells Edgex

x,y x1
y1

x1+1
y1

A C

MSP(T ,M, E ,D,∆, Γ)

mesh: cart

mesh entities: cell,edgex

computation domains:

allcell in cell

alledgex in edgex

data:

A,cell

C,edgex

time:500

computations:

A[allcell]=comp(C[n1])
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Multi-Stencil Language

Multi-Stencil Language

MSL is not

I a new stencil optimizer/compiler

I a new distributed data structure

MSL is

I a high-level language for multi-stencil simulations

I agnostic from the type of mesh used (data structure)

I based on identifiers only

MSL produces a ”ready-to-fill”
component-based parallel scheduling of the simulation
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Multi-Stencil Language

Related Work

Complementary work

I Distributed data structures : SkelGIS, Global Arrays

I Stencil DSLs (on grids) : Pochoir, PATUS

I Stencil DSLs (on unstructured meshes) : OP2, Liszt

Similar work

I The SIPSim model (DDS,Data,applicators and iterators)
I Abstraction of a distributed data structure

I Pipeline of stencil computations for image processing : Halide
I On grids (image), different abstraction level

I DSL to component-based runtime : ?
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Overview

MSL to Component-based runtime

Ready-to-fill parallel scheduling : mid-grain parallelism

I Data parallelism
I External distributed data structure
I Automatic detection of synchronizations

I Task parallelism
I Compile a static scheduling of computation kernels

The fine grain parallelism is left to other languages :

I OpenMP in the kernels

I Kernels generated by stencil compilers for CPU or GPU
(Pochoir, Liszt etc.)
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Overview

MSL to Component-based runtime

MSP(T ,M, E ,D,∆, Γ)

Driverstart

m

TimeT Computations

∗

Γ

Data∆,D

DDS M, E

∗

Duplicated on each processor/core
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Overview

MSL to Component-based runtime

MSP(T ,M, E ,D,∆, Γ)

Driverstart

m

TimeT Computations

∗

Γ

Data∆,D

DDS M, E

∗
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Overview

MSL to Component-based runtime

MSP(T ,M, E ,D,∆, Γ)

Driverstart

m

TimeT Computations

∗

Γ

Data∆,D

DDS M, E

∗

Duplicated on each processor/core
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Compiler

Example

mesh: cart

mesh entities: cell ,edgex ,edgey

computation domains:

allcell in cell

alledgex in edgex

alledgey in edgey

part1edgex in edgex

part2edgex in edgex

data:

a,cell

b,cell

c,edgex

d,edgex

e,edgey

f,cell

g,edgey

h,edgex

i,cell

j,edgex

time:500

computations:

b[allcell ]=c0(a)

c[alledgex ]=c1(b[n1])

d[alledgex ]=c2(c)

e[alledgey ]=c3(c)

f[allcell ]=c4(d[n1])

g[alledgey ]=c5(e)

h[alledgex ]=c6(f)

i[allcell ]=c7(g,h)

j[partedgex ]=c8(i[n1])
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Compiler

Data parallelism

1. Assembly of components duplicated on each resource

2. External Distributed Data Structure to split data among
resources

3. Detect when synchronizations are needed

Synchronization

When a computation read a data, usign a stencil shape, that has
been written by a previous computation.

Γ = [c0, c1, c2, c3, c4, c5, c6, c7, c8]
↪→ [c0, sync1, c1, c2, c3, sync4, c4, c5, c6, c7, sync8, c8]
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Compiler

Data and task parallelism

Dependency graph

1. Each node is a computation or a synchronization

2. Each edge is a dependency : a computation read a data that
has been written before.

c0 sync1 c1

c2

c3

sync4

c5

c4 c6

c7 sync8 c8

Dynamic or static scheduling ?
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Compiler

Series-Parallel Tree

Valdes & Al, The Recognition of Series Parallel Digraphs, STOC ’79

S

c0 sync1 c1 P c7 sync8 c8

S S

c2 sync4 c4 c6 c3 c5
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Compiler

Series-Parallel Tree

Valdes & Al, The Recognition of Series Parallel Digraphs, STOC ’79

S

c0 sync1 c1 P c7 sync8 c8

S S

c2 sync4 c4 c6 c3; c5

Loop fusion optimization possible
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Compiler

Series-Parallel Tree

Valdes & Al, The Recognition of Series Parallel Digraphs, STOC ’79

S

c0 sync1 c1 P c7 sync8 c8

S S

c2 sync4 c4 c6 c3; c5

Specific components

I SEQ to directly replace S
nodes

I PAR to directly replace P
nodes

I SYNC for synchronizations

I K for computation kernels

Loop fusion optimization possible
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Compiler

Component-based runtime

Driver

m

Time Computations

∗

Data

DDS

SEQ m K (c0) *

SYNC m

K (c1) *

PAR m

SEQ m

K (c2) *

SYNC m

K (c4) *

K (c6) *

SEQ m K (c3) *

K (c5) *

K (c7) *

SYNC m

K (c8) *
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Evaluation

Resume

The MSL compiler can produce :

I A data parallel pattern of the multi-stencil application

I An hybrid (data + task) pattern of the multi-stencil
application
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Evaluation

Implementation and evaluation

Implementation of MSL : Python, SkelGIS and L2C

Shallow-water equations : 1 mesh, 3 mesh entities, 7
computation domains, 48 data, 98 computations (32 stencils, 66
local kernels)

Evaluation of the data parallelism

I Full SkelGIS implementation (DDS + specific interfaces to
hide communications)

I MSL implementation which uses the SkelGIS DDS

I Thin Nodes TGCC Curie : two 8-cores Intel Sandy Bridge
2.7GHz, 64GB RAM, Infiniband
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Evaluation

Evaluations

Mesh size : 10k × 10k Number of iterations : 500
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Conclusion and perspectives

Conclusion

Conclusion

I A DSL for Multi-Stencil applications (MSL)
I The compilation of MSL to get a parallel scheduling pattern

of the simulation
I Data parallelism
I Task parallelism

I The dump to a component-based runtime

I Data parallelism evaluation : no overhead introduced
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Conclusion and perspectives

Perspectives

Perspectives

I Improvment of the language (convergence criteria, reduction
etc.)

I Scalability up to 32k cores on TGCC Curie (CEA)
I Compared with SkelGIS and MPI only

I Evaluations on Data+Task parallelism
I OpenMP 3 inside kernels

I Dynamic scheduling
I OpenMP 4 with a scheduling component (libgomp)
I Kstar for StarPU and XKaapi runtimes

I CPU+GPGPUs using stencil compilers (Pochoir, PATUS etc.)

↪→ Show portability, maintainability introduced by components
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