
1/ 28

From DSL to HPC Component-Based Runtime:
A Multi-Stencil DSL Case Study

Julien Bigot, Hélène Coullon, Christian Perez

INRIA team Avalon
Maison de la simulation (CEA)

WOLFHPC 2015 - 16th November 2015

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study



2/ 28

Motivation

+ Domain Specific Languages

I Separation of concerns (domain/implementation)

I Easy language for the user

I Implicit optimizations

I Implicit parallelization

- Domain Specific Languages

I Difficulties deported to the DSL designer
I Low level high performance programming
I Maintainability and portability

I As many DSLs as domains
I DSL composition ?

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study



3/ 28

Motivation

Component models

I Divide an application into several independent black boxes

I Each component defines its interactions with outer world

I Application = Assembly of components

+ Component models

I Maintainability through separation of concerns

I Code-reuse and productivity

I Dynamic assembly of components

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study



4/ 28

Motivation

What if a DSL produces a component-based runtime ?

I Is it feasible ?

I Is it efficient ?
I Does it improve issues of DSLs ?

I maintainability
I portability
I productivity

Let’s take a useful example : the Multi-Stencil Language !

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study



5/ 28

Table of contents

Multi-Stencil Language

Overview

Compiler

Evaluation

Conclusion and perspectives

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study



6/ 28

Multi-Stencil Language Overview Compiler Evaluation Conclusion and perspectives

Multi-Stencil Language

Numerical simulation = Multi-Stencil application

Partial Differential Equations
∂u(x,y,t)

∂t
= ∂2u(x,y,t)

∂x2 + ∂2u(x,y,t)

∂y2

+ specific behavior for

boundary conditions

Mesh
Time iterations

Time and space

discretization

+

Explicit
numerical schemes

stencils

Step by step approximation

of the phenomena

Numerical methods

Finite difference/volume/elment

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study



7/ 28

Multi-Stencil Language Overview Compiler Evaluation Conclusion and perspectives

Multi-Stencil Language

Time and Mesh

Time
At each time iteration of the simulation are applied the
computation kernels of the application.

Mesh

I A Mesh is a connected undirected graph M = (V ,E ) without
bridges

I Mesh entities are a subset of V ∪ E

Mesh Cells Edgex

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study



8/ 28

Multi-Stencil Language Overview Compiler Evaluation Conclusion and perspectives

Multi-Stencil Language

Data and Computation Kernels

Data
Data is a set of numerical values, each one attached to a given
mesh entity

Computation kernel

I Set of data read for the computation
I Each one associated to a stencil shape

I Data written by the computation

I A numerical expression
I A computation domain

I Subset of mesh entities

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study



9/ 28

Multi-Stencil Language Overview Compiler Evaluation Conclusion and perspectives

Multi-Stencil Language

Multi-Stencil program

MSP(T ,M, E ,D,∆, Γ)

I T the set of time iterations to tun the simulation

I M the mesh of the simulation

I E the set of mesh entities

I D the set of computation domains

I ∆ the set of data

I Γ the set of computations

= the six sections of a Multi-Stencil Language program !

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study



10/ 28

Multi-Stencil Language Overview Compiler Evaluation Conclusion and perspectives

Multi-Stencil Language

Example

Mesh Cells Edgex

x,y x1
y1

x1+1
y1

A C

MSP(T ,M, E ,D,∆, Γ)

mesh: cart

mesh entities: cell,edgex

computation domains:

allcell in cell

alledgex in edgex

data:

A,cell

C,edgex

time:500

computations:

A[allcell]=comp(C[n1])

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study



11/ 28

Multi-Stencil Language Overview Compiler Evaluation Conclusion and perspectives

Multi-Stencil Language

Multi-Stencil Language

MSL is not

I a new stencil optimizer/compiler

I a new distributed data structure

MSL is

I a high-level language for multi-stencil simulations

I agnostic from the type of mesh used (data structure)

I based on identifiers only

MSL produces a ”ready-to-fill”
component-based parallel scheduling of the simulation

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study



12/ 28

Multi-Stencil Language Overview Compiler Evaluation Conclusion and perspectives

Multi-Stencil Language

Related Work

Complementary work

I Distributed data structures : SkelGIS, Global Arrays

I Stencil DSLs (on grids) : Pochoir, PATUS

I Stencil DSLs (on unstructured meshes) : OP2, Liszt

Similar work

I The SIPSim model (DDS,Data,applicators and iterators)
I Abstraction of a distributed data structure

I Pipeline of stencil computations for image processing : Halide
I On grids (image), different abstraction level

I DSL to component-based runtime : ?

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study



13/ 28

Multi-Stencil Language Overview Compiler Evaluation Conclusion and perspectives

Overview

MSL to Component-based runtime

Ready-to-fill parallel scheduling : mid-grain parallelism

I Data parallelism
I External distributed data structure
I Automatic detection of synchronizations

I Task parallelism
I Compile a static scheduling of computation kernels

The fine grain parallelism is left to other languages :

I OpenMP in the kernels

I Kernels generated by stencil compilers for CPU or GPU
(Pochoir, Liszt etc.)

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study



14/ 28

Multi-Stencil Language Overview Compiler Evaluation Conclusion and perspectives

Overview

MSL to Component-based runtime

MSP(T ,M, E ,D,∆, Γ)

Driverstart

m

TimeT Computations

∗

Γ

Data∆,D

DDS M, E

∗

Duplicated on each processor/core

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study



15/ 28

Multi-Stencil Language Overview Compiler Evaluation Conclusion and perspectives

Overview

MSL to Component-based runtime

MSP(T ,M, E ,D,∆, Γ)

Driverstart

m

TimeT Computations

∗

Γ

Data∆,D

DDS M, E

∗

Duplicated on each processor/core

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study



16/ 28

Multi-Stencil Language Overview Compiler Evaluation Conclusion and perspectives

Overview

MSL to Component-based runtime

MSP(T ,M, E ,D,∆, Γ)

Driverstart

m

TimeT Computations

∗

Γ

Data∆,D

DDS M, E

∗

Duplicated on each processor/core

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study



17/ 28

Multi-Stencil Language Overview Compiler Evaluation Conclusion and perspectives

Compiler

Example

mesh: cart

mesh entities: cell ,edgex ,edgey

computation domains:

allcell in cell

alledgex in edgex

alledgey in edgey

part1edgex in edgex

part2edgex in edgex

data:

a,cell

b,cell

c,edgex

d,edgex

e,edgey

f,cell

g,edgey

h,edgex

i,cell

j,edgex

time:500

computations:

b[allcell ]=c0(a)

c[alledgex ]=c1(b[n1])

d[alledgex ]=c2(c)

e[alledgey ]=c3(c)

f[allcell ]=c4(d[n1])

g[alledgey ]=c5(e)

h[alledgex ]=c6(f)

i[allcell ]=c7(g,h)

j[partedgex ]=c8(i[n1])

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study



18/ 28

Multi-Stencil Language Overview Compiler Evaluation Conclusion and perspectives

Compiler

Data parallelism

1. Assembly of components duplicated on each resource

2. External Distributed Data Structure to split data among
resources

3. Detect when synchronizations are needed

Synchronization

When a computation read a data, usign a stencil shape, that has
been written by a previous computation.

Γ = [c0, c1, c2, c3, c4, c5, c6, c7, c8]
↪→ [c0, sync1, c1, c2, c3, sync4, c4, c5, c6, c7, sync8, c8]

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study



19/ 28

Multi-Stencil Language Overview Compiler Evaluation Conclusion and perspectives

Compiler

Data and task parallelism

Dependency graph

1. Each node is a computation or a synchronization

2. Each edge is a dependency : a computation read a data that
has been written before.

c0 sync1 c1

c2

c3

sync4

c5

c4 c6

c7 sync8 c8

Dynamic or static scheduling ?

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study



20/ 28

Multi-Stencil Language Overview Compiler Evaluation Conclusion and perspectives

Compiler

Series-Parallel Tree

Valdes & Al, The Recognition of Series Parallel Digraphs, STOC ’79

S

c0 sync1 c1 P c7 sync8 c8

S S

c2 sync4 c4 c6 c3 c5

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study



21/ 28

Multi-Stencil Language Overview Compiler Evaluation Conclusion and perspectives

Compiler

Series-Parallel Tree

Valdes & Al, The Recognition of Series Parallel Digraphs, STOC ’79

S

c0 sync1 c1 P c7 sync8 c8

S S

c2 sync4 c4 c6 c3; c5

Loop fusion optimization possible

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study



22/ 28

Multi-Stencil Language Overview Compiler Evaluation Conclusion and perspectives

Compiler

Series-Parallel Tree

Valdes & Al, The Recognition of Series Parallel Digraphs, STOC ’79

S

c0 sync1 c1 P c7 sync8 c8

S S

c2 sync4 c4 c6 c3; c5

Specific components

I SEQ to directly replace S
nodes

I PAR to directly replace P
nodes

I SYNC for synchronizations

I K for computation kernels

Loop fusion optimization possible

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study



23/ 28

Multi-Stencil Language Overview Compiler Evaluation Conclusion and perspectives

Compiler

Component-based runtime

Driver

m

Time Computations

∗

Data

DDS

SEQ m K (c0) *

SYNC m

K (c1) *

PAR m

SEQ m

K (c2) *

SYNC m

K (c4) *

K (c6) *

SEQ m K (c3) *

K (c5) *

K (c7) *

SYNC m

K (c8) *

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study



24/ 28

Multi-Stencil Language Overview Compiler Evaluation Conclusion and perspectives

Evaluation

Resume

The MSL compiler can produce :

I A data parallel pattern of the multi-stencil application

I An hybrid (data + task) pattern of the multi-stencil
application

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study



25/ 28

Multi-Stencil Language Overview Compiler Evaluation Conclusion and perspectives

Evaluation

Implementation and evaluation

Implementation of MSL : Python, SkelGIS and L2C

Shallow-water equations : 1 mesh, 3 mesh entities, 7
computation domains, 48 data, 98 computations (32 stencils, 66
local kernels)

Evaluation of the data parallelism

I Full SkelGIS implementation (DDS + specific interfaces to
hide communications)

I MSL implementation which uses the SkelGIS DDS

I Thin Nodes TGCC Curie : two 8-cores Intel Sandy Bridge
2.7GHz, 64GB RAM, Infiniband

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study



26/ 28

Multi-Stencil Language Overview Compiler Evaluation Conclusion and perspectives

Evaluation

Evaluations

Mesh size : 10k × 10k Number of iterations : 500

23 24 25 26 27 28

log cores

24

25

26

27

28

29

210

lo
g 

ex
ec

ut
io

n 
tim

e

MSL NL
SkelGIS NL

0 50 100 150 200 250 300
cores

0

5

10

15

20

25

ite
ra

tio
ns

 p
er

 s
ec

on
d

Ideal
MSL NL
SkelGIS NL

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study



27/ 28

Multi-Stencil Language Overview Compiler Evaluation Conclusion and perspectives

Conclusion and perspectives

Conclusion

Conclusion

I A DSL for Multi-Stencil applications (MSL)
I The compilation of MSL to get a parallel scheduling pattern

of the simulation
I Data parallelism
I Task parallelism

I The dump to a component-based runtime

I Data parallelism evaluation : no overhead introduced

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study



28/ 28

Multi-Stencil Language Overview Compiler Evaluation Conclusion and perspectives

Conclusion and perspectives

Perspectives

Perspectives

I Improvment of the language (convergence criteria, reduction
etc.)

I Scalability up to 32k cores on TGCC Curie (CEA)
I Compared with SkelGIS and MPI only

I Evaluations on Data+Task parallelism
I OpenMP 3 inside kernels

I Dynamic scheduling
I OpenMP 4 with a scheduling component (libgomp)
I Kstar for StarPU and XKaapi runtimes

I CPU+GPGPUs using stencil compilers (Pochoir, PATUS etc.)

↪→ Show portability, maintainability introduced by components

Julien Bigot (CEA), Hélène Coullon (INRIA), Christian Perez (INRIA) INRIA

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study


	Multi-Stencil Language
	Multi-Stencil Language

	Overview
	Overview

	Compiler
	Compiler

	Evaluation
	Evaluation

	Conclusion and perspectives
	Conclusion and perspectives


