From DSL to HPC Component-Based Runtime:
A Multi-Stencil DSL Case Study

Julien Bigot, Hélene Coullon, Christian Perez

INRIA team Avalon
Maison de la simulation (CEA)

WOLFHPC 2015 - 16" November 2015

Julien Bigot (CEA), Hélene Coullon (INRIA), Christian Perez (INRIA)

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

Motivation

+ Domain Specific Languages

» Separation of concerns (domain/implementation)
» Easy language for the user
» Implicit optimizations

» Implicit parallelization

- Domain Specific Languages

» Difficulties deported to the DSL designer
> Low level high performance programming
» Maintainability and portability

» As many DSLs as domains
» DSL composition ?

Julien Bigot (CEA), Hélene Coullon (INRIA), Christian Perez (INRIA)

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

Motivation

Component models

» Divide an application into several independent black boxes
» Each component defines its interactions with outer world

» Application = Assembly of components

-+ Component models

» Maintainability through separation of concerns
» Code-reuse and productivity

» Dynamic assembly of components

Julien Bigot (CEA), Héléne Coullon (INRIA), Christian Perez (INRIA)

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

Motivation

What if a DSL produces a component-based runtime ?

> Is it feasible?

> Is it efficient ?

» Does it improve issues of DSLs?
» maintainability
» portability
» productivity

Let's take a useful example : the Multi-Stencil Language!

Julien Bigot (CEA), Hélene Coullon (INRIA), Christian Perez (INRIA)

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

Table of contents

Multi-Stencil Language
Overview

Compiler

Evaluation

Conclusion and perspectives

Julien Bigot (CEA), Héléne Coullon (INRIA), Christian Perez (INRIA)

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

Multi-Stencil Language
000000

Multi-Stencil Language

Numerical simulation = Multi-Stencil application

+ specific behavior for

Partial Differential Equations
dulxoy,t) _ 2Pulxyt) | DPulxy.t) -
at Ox2 ay? \

Time and space

boundary conditions

discretization

/

Mesh ‘
Time iterations

Numerical methods

Finite difference/volume/elment

l

Explicit mTmmem—mmmem—ooo

. , Step by step approximation |
numerical schemes F----- > |
a I of the phenomena I

stencils | 00 oo y

Julien Bigot (CEA), Hélene Coullon (INRIA), Christian Perez (INRIA)

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

Multi-Stencil Language
[o] Je]ele]e]e]

Multi-Stencil Language

Time and Mesh

Time

At each time iteration of the simulation are applied the

computation kernels of the application.

Mesh

» A Mesh is a connected undirected graph M = (V, E) without

bridges

» Mesh entities are a subset of VU E

Mesh Cells Edgex
X[X[X]|X
X[X[x|x
X[X[X]|X
X[X[X]|X
L e e o J

Julien Bigot (CEA), Hélene Coullon (INRIA), Christian Perez (INRIA)

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

Multi-Stencil Language
[e]e] lelele]e]

Multi-Stencil Language

Data and Computation Kernels

Data
Data is a set of numerical values, each one attached to a given
mesh entity

Computation kernel

» Set of data read for the computation

» Each one associated to a stencil shape
» Data written by the computation
» A numerical expression

» A computation domain
» Subset of mesh entities

Julien Bigot (CEA), Hélene Coullon (INRIA), Christian Perez (INRIA)

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

Multi-Stencil Language
[e]e]e] lele]e]

Multi-Stencil Language

Multi-Stencil program

MSP(T, M, E,D,A,T)

v

T the set of time iterations to tun the simulation

M the mesh of the simulation

v

& the set of mesh entities

v

v

D the set of computation domains
A the set of data

v

v

I" the set of computations

= the six sections of a Multi-Stencil Language program !

Julien Bigot (CEA), Hélene Coullon (INRIA), Christian Perez (INRIA)

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

Multi-Stencil Language
0000e00

Multi-Stencil Language

Example
Mesh Cells Edgex
X | X | X |x
X | X | X |x
X | X | X |x
X | X |x|x

Julien Bigot (CEA), Héléne Coullon (INRIA), Christian Perez (INRIA)

MSP(T,M,E,D,A,T)

mesh: cart
mesh entities: cell,edgex
computation domains:
allcell in cell
alledgex in edgex
data:
A,cell
C,edgex
time:500
computations:
Alallcell]l=comp(C[n1])

From L to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

Multi-Stencil Language
[e]e]e]ele] o]

Multi-Stencil Language

Multi-Stencil Language

MSL is not

> a new stencil optimizer/compiler

» a new distributed data structure

MSL is

> a high-level language for multi-stencil simulations
» agnostic from the type of mesh used (data structure)
> based on identifiers only

MSL produces a "ready-to-fill”

component-based parallel scheduling of the simulation

Julien Bigot (CEA), Héléne Coullon (INRIA), Christian Perez (INRIA)
From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

Multi-Stencil Language
000000e

Multi-Stencil Language

Related Work

Complementary work

» Distributed data structures : SkelGIS, Global Arrays
» Stencil DSLs (on grids) : Pochoir, PATUS
» Stencil DSLs (on unstructured meshes) : OP2, Liszt

Similar work

» The SIPSim model (DDS,Data,applicators and iterators)
» Abstraction of a distributed data structure

» Pipeline of stencil computations for image processing : Halide
» On grids (image), different abstraction level
» DSL to component-based runtime : 7

Julien Bigot (CEA), Hélene Coullon (INRIA), Christian Perez (INRIA)
From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

Overview
[Je]ele]

Overview

MSL to Component-based runtime

Ready-to-fill parallel scheduling : mid-grain parallelism

» Data parallelism

» External distributed data structure
» Automatic detection of synchronizations

» Task parallelism
» Compile a static scheduling of computation kernels

The fine grain parallelism is left to other languages :
» OpenMP in the kernels

» Kernels generated by stencil compilers for CPU or GPU
(Pochoir, Liszt etc.)

Julien Bigot (CEA), Hélene Coullon (INRIA), Christian Perez (INRIA)

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

Overview
[o] Jele]

Overview

MSL to Component-based runtime

MSP(T,M,E,D,A,T)

Duplicated on each processor/core

Julien Bigot (CEA), Hélene Coullon (INRIA), Christian Perez (INRIA)
From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

Overview
[e]e] o]

Overview

MSL to Component-based runtime

MSP(T,M,E,D,A,T)

Duplicated on each processor/core

Julien Bigot (CEA), Hélene Coullon (INRIA), Christian Perez (INRIA)
From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

Overview
[e]e]e])

Overview

MSL to Component-based runtime

MSP(T,M,E,D,A,T)

Duplicated on each processor/core

Julien Bigot (CEA), Hélene Coullon (INRIA), Christian Perez (INRIA)
From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

Compiler
@000000

Compiler
Example
f,cell
mesh: cart g,edgey
mesh entities: cell,edgex,edgey h,edgex
computation domains: i,cell
allcell in cell j,edgex
alledgex in edgex time: 500
alledgey in edgey computations:
partledgex in edgex blallcell]l=cO(a)
part2edgex in edgex cl[alledgex]=c1(b[n1])
data: d[alledgex]=c2(c)
a,cell e[alledgey]l=c3(c)
b,cell flallcelll=c4(d[n1])
c,edgex glalledgeyl=c5(e)
d,edgex h[alledgex]=c6(£f)
e,edgey ilallcelll=c7(g,h)

jlpartedgex]=c8(i[n1])

Julien Bigot (CEA), Héléne Coullon (INRIA), Christian Perez (INRIA)

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

Compiler
[o] Je]ele]e]e]

Compiler

Data parallelism

1. Assembly of components duplicated on each resource

2. External Distributed Data Structure to split data among
resources

3. Detect when synchronizations are needed

Synchronization

When a computation read a data, usign a stencil shape, that has
been written by a previous computation.

M= [C07 ¢, €2, C3, C4, Cs, Cp, C7, C8]

— [co, synci, c1, c2, ¢3, Synca, ca, Cs, Cg, €7, Syncs, Cg]

Julien Bigot (CEA), Héléne Coullon (INRIA), Christian Perez (INRIA)

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

Compiler
[e]e] lelele]e]

Compiler

Data and task parallelism

Dependency graph

1. Each node is a computation or a synchronization

2. Each edge is a dependency : a computation read a data that
has been written before.

Co > SYyNncy » C4 — GCp
7 N

N /

3 — Gy

Co » Syncy » 1 C7 » Syncg > Cg

Dynamic or static scheduling ?

Julien Bigot (CEA), Héléne Coullon (INRIA), Christian Perez (INRIA)

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

Compiler
[e]e]e] lele]e]

Compiler

Series-Parallel Tree

Valdes & Al, The Recognition of Series Parallel Digraphs, STOC '79

Cy Syncs ca Cc3 Cs
SO ! a 1/

co . synci c syncg _ cg

\T/

Julien Bigot (CEA), Hélene Coullon (INRIA), Christian Perez (INRIA)

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

Compiler
[e]e]e]e] Te]e]

Compiler

Series-Parallel Tree

Valdes & Al, The Recognition of Series Parallel Digraphs, STOC '79

Co Syncy, ¢ Co C3,Ch

xx/ 1

S

Loop fusion optlmlzatlon possible

Julien Bigot (CEA), Héléne Coullon (INRIA), Christian Perez (INRIA)

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

Compiler
[e]e]e]ele] o]

Compiler

Series-Parallel Tree

Valdes & Al, The Recognition of Series Parallel Digraphs, STOC '79
Specific components

C syna ¢ Cg C3iCs » SEQ to directly replace S
x T /] nodes
S » PAR to directly replace P
syncy syncg . cg nodes

\ N / » SYNC for synchronizations

» K for computation kernels

Loop fusion optimization possible

Julien Bigot (CEA), Hélene Coullon (INRIA), Christian Perez (INRIA)

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

Compiler
0000000

Compiler

Component-based runtime

o—| Driver so—— DDS

(Time}—++— Computations . - o SEQ}-G——{ K« Jo* (Ke)]or
° S
))er (Ke)er
(Ke) o

sicie mﬁn
(KGal)or

65) %

Julien Bigot (CEA), Hélene Coullon (INRIA), Christian Perez (INRIA)

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

Evaluation
[Jele}

Evaluation

Resume

The MSL compiler can produce :
> A data parallel pattern of the multi-stencil application

» An hybrid (data + task) pattern of the multi-stencil
application

Julien Bigot (CEA), Hélene Coullon (INRIA), Christian Perez (INRIA)

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

Evaluation
(o] le}

Evaluation

Implementation and evaluation

Implementation of MSL : Python, SkelGIS and L2C

Shallow-water equations : 1 mesh, 3 mesh entities, 7
computation domains, 48 data, 98 computations (32 stencils, 66
local kernels)

Evaluation of the data parallelism
» Full SkelGIS implementation (DDS + specific interfaces to
hide communications)
» MSL implementation which uses the SkelGIS DDS

» Thin Nodes TGCC Curie : two 8-cores Intel Sandy Bridge
2.7GHz, 64GB RAM, Infiniband

Julien Bigot (CEA), Hélene Coullon (INRIA), Christian Perez (INRIA)

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

Evaluation
[e]e]]

Evaluation

Evaluations

Mesh size : 10k x 10k Number of iterations : 500

Q10 . . 25, T T
+—— MSLNL --- ldeal
2° = SkelGIS NL o MSL NL - }
- =~ SkelGIS NL
o c -
E2° 3 .
< % 15 2
'g 7] ,’/
K g L
(7] c
S S 10
g 2° g /
= P
2 5 //'
2 - 5 0
2 2 2 2 2 2 0 50 100 150 200 250 300
log cores cores

Julien Bigot (CEA), Héléne Coullon (INRIA), Christian Perez (INRIA)

From to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

Conclusion and perspectives
0

Conclusion and perspectives

Conclusion

Conclusion

» A DSL for Multi-Stencil applications (MSL)

» The compilation of MSL to get a parallel scheduling pattern
of the simulation

» Data parallelism
» Task parallelism

» The dump to a component-based runtime

» Data parallelism evaluation : no overhead introduced

Julien Bigot (CEA), Hélene Coullon (INRIA), Christian Perez (INRIA)

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

Conclusion and perspectives
oe

Conclusion and perspectives

Perspectives

Perspectives

» Improvment of the language (convergence criteria, reduction
etc.)
» Scalability up to 32k cores on TGCC Curie (CEA)
» Compared with SkelGIS and MPI only
» Evaluations on Data+Task parallelism
» OpenMP 3 inside kernels
» Dynamic scheduling

» OpenMP 4 with a scheduling component (libgomp)
» Kstar for StarPU and XKaapi runtimes

» CPU+GPGPUs using stencil compilers (Pochoir, PATUS etc.)

— Show portability, maintainability introduced by components

Julien Bigot (CEA), Hélene Coullon (INRIA), Christian Perez (INRIA)

From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

	Multi-Stencil Language
	Multi-Stencil Language

	Overview
	Overview

	Compiler
	Compiler

	Evaluation
	Evaluation

	Conclusion and perspectives
	Conclusion and perspectives

