Mechanised Semantics of BSP Routines
with Subgroup Synchronisation

Jean Fortin & Frédéric Gava

Laboratory of Algorithms, Complexity and Logic (LACL)
University of Paris-East

Mechanised Semantics of Subgroups 1/32

BSP Progra (o Conclusion

Outline

o BSP Programming
© Mechanised Semantics

e Conclusion

Mechanised Semantics of Subgroups 2/32

nclusion

Outline

o BSP Programming

Mechanised Semantics of Subgroups 3/32

BSP Programming E Conclusion
©00000000000 I 000

Bridging Model: Bulk Sy s Parallelism ()

The computer
Defined by:
@ p pairs CPU/memory

Mechanised Semantics of Subgroups 4/32

BSP Programming E Conclusion
©00000000000 I 000

Bridging Model: Bulk Sy s Parallelism ()

The computer
Defined by:
@ p pairs CPU/memory
@ Communication network (g)

Mechanised Semantics of Subgroups 4/32

BSP Programming E Conclusion
©00000000000 I 000

Bridging Model: Bulk Sy s Parallelism ()

The computer

Defined by:
@ p pairs CPU/memory
@ Communication network (g)
@ Synchronisation unit (L)

Mechanised Semantics of Subgroups 4/32

BSP Programming

®00000000000

The computer
Defined by:
@ p pairs CPU/memory
@ Communication network (g)
@ Synchronisation unit (L)
@ Super-steps execution

local .
computations

communication (®g)
barrier (®L)
next super-step

Mechanised Semantics of Subgroups 4/32

BSP Programming

®00000000000

The computer
Defined by:
@ p pairs CPU/memory
@ Communication network (g)
@ Synchronisation unit (L)
@ Super-steps execution

local .
computations

communication (®g)

\
-
y ! <‘/\\\

S

@ “Confluent” *+ + t nextsuper-step

Mechanised Semantics of Subgroups 4/32

BSP Programming

®00000000000

The computer
Defined by:
@ p pairs CPU/memory
@ Communication network (g)
@ Synchronisation unit (L)
@ Super-steps execution

local .
computations

communication (®g)

\
-
y ! <‘/\\\

S

@ “Confluent” *+ + t nextsuper-step

@ “Deadlock-free”

Mechanised Semantics of Subgroups 4/32

BSP Programming

®00000000000

The computer
Defined by:
@ p pairs CPU/memory
@ Communication network (g)
@ Synchronisation unit (L)
@ Super-steps execution

local .
computations

communication (®g)

\
-
y ! <‘/\\\

S

@ “Confluent” *+ + t nextsuper-step

@ “Deadlock-free”
@ Predictable performances

v

Mechanised Semantics of Subgroups 4/32

BSP Programming
000000000000

Examples: broadcasting a values

Direct broadcast (one super-step)
0 1 2
[] [| []
| o | | o | | o |

Cost=pxgxn + L

Mechanised Semantics of Subgroups 5/32

BSP Programming Conduswm
0@0000000000 000

Examples: broadcasting a values

Direct broadcast (one super-step)

] =]
e]

Cost=pxgxn + L

Broadcast with two super-steps

Cost=2xgxn + 2xL

Mechanised Semantics of Subgroups 5/32

BSP Programming
[e]e] lelelelelele]ele]e)

Parallel Sorting by Regular Sampling (PSRS)

‘e ® ® o @ o ([0g 00606 ¢ _oeee o o
@® SequentalSort ® @ @ @ ® Sequential Sort g @ '@ ® Sequential Sort

‘oe0o 00 00 00O EYY I 'YX
Primary Sample | Primary Sample | Primary Sample
IO XX OO0 NODORIOKX Ol

o000 o000
s, kNt

Secondary Sample i Secondary Sampl

Secondary Sam le. -.. °

Mechanised Semantics of Subgroups 6/32

BSP Programming
[e]e]e] lelelelele]ele]e)

BSP Imperative Programming

Languages and libraries

@ Dedicated Languages: NestStep, BSP++, BSP-Python, ...

Mechanised Semantics of Subgroups 7132

BSP Programming
[e]e]e] lelelelele]ele]e)

BSP Imperative Programming

Languages and libraries

@ Dedicated Languages: NestStep, BSP++, BSP-Python, ...
© BSPLib for C and Java
© BSPGPU, Ct, Hamma, JBSP, JPUB, ...

Mechanised Semantics of Subgroups 7132

BSP Programming
[e]e]e] lelelelele]ele]e)

BSP Imperative Programming

Languages and libraries

@ Dedicated Languages: NestStep, BSP++, BSP-Python, ...
© BSPLib for C and Java

© BSPGPU, Ct, Hamma, JBSP, JPUB, ...

Q WIPI collective operations

Mechanised Semantics of Subgroups 7132

BSP Programming SEETIE
[e]e]e] lelelelele]ele]e)

BSP Imperative Programming

Languages and libraries
@ Dedicated Languages: NestStep, BSP++, BSP-Python, ...
© BSPLib for C and Java
© BSPGPU, Ct, Hamma, JBSP, JPUB, ...
Q WIPI collective operations

Communications:

CpPU1 Mel CPU2 Mem

| i

I

send(2,v)

.

Synchronisation

CPU1 Mel CPU2 Mem

.

x=recv(1) ‘

o’

Mechanised Semantics of Subgroups 7132

BSP Programming SEETIE
[e]e]e] lelelelele]ele]e)

BSP Imperative Programming

Languages and libraries
@ Dedicated Languages: NestStep, BSP++, BSP-Python, ...
© BSPLib for C and Java
© BSPGPU, Ct, Hamma, JBSP, JPUB, ...
Q WIPI collective operations

Communications: Communications:

Mem
get(2,x,y)

‘ Synchronisation

CPUL Me CPU2 Mem CPU1 Mem CPU2 Mem

x=recv(1) ‘
v

o’

I

i

CPUL Mei

| i

send(2,v)

Synchronisation

.

Mechanised Semantics of Subgroups 7132

BSP Programming SEETIE Conclusion
000080000000

Examples of C primitives

and

@ Typical BSMP routines:
e bsp_send(grp,dest,buffer, size)
e bsp_nmsgs (grp)
e msg*x bsp_findmsg(grp,proc_id, index)

Mechanised Semantics of Subgroups 8/32

BSP Programming SEETIE Conclusion
000080000000

Examples of C primitives

and

@ Typical BSMP routines:
e bsp_send(grp,dest,buffer, size)
e bsp_nmsgs (grp)
e msg*x bsp_findmsg(grp,proc_id, index)
@ Typical DRMA routines:
e bsp_push_reg(grp,ident, size)
e bsp_get (grp, srcPID, src,offset,dest, nbytes)

Mechanised Semantics of Subgroups 8/32

BSP Programming SEETIE Conclusion
000080000000

Examples of C primitives

and

@ Typical BSMP routines:
e bsp_send(grp,dest,buffer, size)
e bsp_nmsgs (grp)
e msg*x bsp_findmsg(grp,proc_id, index)
@ Typical DRMA routines:
e bsp_push_reg(grp,ident, size)
e bsp_get (grp, srcPID, src,offset,dest, nbytes)

@ bsp_sync (grp) (barrier)

Mechanised Semantics of Subgroups 8/32

BSP Programming SEETIE Conclusion
000080000000

Examples of C primitives

and

@ Typical BSMP routines:
e bsp_send(grp,dest,buffer, size)
e bsp_nmsgs (grp)
e msg*x bsp_findmsg(grp,proc_id, index)

@ Typical DRMA routines:

e bsp_push_reg(grp,ident, size)

e bsp_get (grp, srcPID, src,offset,dest, nbytes)
@ bsp_sync (grp) (barrier)

collective operations

MPI_Scatter (sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)

Po A |B[C]|D scatter A

P1 B

Pz C
gather

P3 D

MPI_Gather (sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)

v

Mechanised Semantics of Subgroups 8/32

BSP Programming
000008000000

Common Bugs in BSP Imperatlve Programs

“Deadlock”

Mechanised Semantics of Subgroups 9/32

BSP Programming
000008000000

Common Bugs in BSP Imperative Programs

“Deadlock”

barrier()

o
a
<
H
a

ol Y

!

Data race, non-determinism

put(3,x,1) Pput(3,x,2)

Synchronisation

N

Mechanised Semantics of Subgroups 9/32

BSP Programming
000008000000

Common Bugs in BSP Imperative Programs

“Deadlock”

o
a
<
H
a

barrier() async()

!

v

Data race, non-determinism

put(3,x,1) Pput(3,x,2)

Synchronisation

il il

v

Out-of-bound errors

put(3,x,3)|

|

V.

Mechanised Semantics of Subgroups 9/32

BSP Programming SEETIE Conclusion
000000800000

Subgroup Synchronisation

Allows the synchronisation of a subset of processes

Mechanised Semantics of Subgroups 10/32

BSP Programming SEETIE
000000800000

Subgroup Synchronisation

Allows the synchronisation of a subset of processes

Advantages

@ Take advantage of hybrid
models (better performance)

@ Close to MPI’s collective
operations

Mechanised Semantics of Subgroups 10/32

BSP Programming SEETIE
000000800000

Subgroup Synchronisation

Advantages

@ Take advantage of hybrid
models (better performance)

@ Close to MPI’s collective
operations

Drawbacks

@ More complex programs
@ BSP cost model is lost I

Mechanised Semantics of Subgroups 10/32

BSP Programming
0000000 e0000

Examples of C primitives

@ BSP_WORLD:t_bsp = all the processors

@ bsp_dup (grp, dup) = a copy of a subgroup

@ bsp_partition (grp, sub,nr,partition) = new
@ bsp_done (grp) = destroy a subgroup

Mechanised Semantics of Subgroups 11/32

BSP Programming SEETIE Conclusion
0000000 e0000 C

Examples of C primitives

@ BSP_WORLD:t_bsp = all the processors

@ bsp_dup (grp, dup) = a copy of a subgroup

@ bsp_partition (grp, sub,nr,partition) = new
@ bsp_done (grp) = destroy a subgroup

Using
@ MPT_COMM_WORLD:MPT_Comm = all the processors
@ MPT_Comm_dup (comm, newcomm) = Duplicates

@ MPI Comm_ free (comm) = free a communicator

@ MPI_Comm_split (comm, color, key, newcomm) =
Creates new communicators based on colors and keys

@ ... (merge, union, intersection, differences)

v

Mechanised Semantics of Subgroups 11/32

BSP Programming SEETIE Conclusion
00000000e000 O O O O

The tool

File.c File.java
Frama-C Krakatoa
File.mlw Libraries
y /
Why
VC gen

Tranform/translate

Y.
Coq Alt-ergo Z3 etc.

Mechanised Semantics of Subgroups 12/32

BSP Programming
000000000800

The Language for Deductive Verification

let sqgrt (n:int) =

let count = ref O in
let sum=ref1in
while !sum < n do

count «<!count + 1;

sum <!sum + 2 = lcount + 1
done;
lcount

Mechanised Semantics of Subgroups 13/32

BSP Programming
000000000800

The Language for Ded e Verification

let sqgrt (n:int) =
{n>0}
let count =ref 0 in
let sum =ref1in
while Isum < n do

count «!count + 1;
sum <!sum + 2 = lcount + 1
done;
lcount
{ result > 0 and
result x result < n < (result+1)x*(result+1) }

Mechanised Semantics of Subgroups 13/32

BSP Programming e S Conclusion
000000000800) 000

The Language for Dreductrir\rle Verification

let sqgrt (n:int) =
{n>0}
let count =ref 0 in
let sum =ref1in
while Isum < n do
{ invariant count > 0 and n > countxcount
and sum = (count+1)x*(count+1)

count «!count + 1;
sum <!sum + 2 = lcount + 1
done;
lcount
{ result > 0 and
result x result < n < (result+1)x*(result+1) }

Mechanised Semantics of Subgroups 13/32

BSP Programming e S Conclusion
000000000800) 000

The Language for Dreductrir\rle Verification

let sqgrt (n:int) =
{n>0}
let count =ref 0 in
let sum =ref 1 in
while Isum < n do
{ invariant count > 0 and n > countxcount
and sum = (count+1)x*(count+1)
variant n — sum }
count «<!count + 1;
sum <!sum + 2 * lcount + 1
done;
lcount
{ result > 0 and
result x result < n < (result+1)x*(result+1) }

Mechanised Semantics of Subgroups 13/32

BSP Programming E Conclusion
000000000080

The tool

CENEICIES

Mechanised Semantics of Sub 14/32

BSP Programming S Conclusion
000000000080 o) 000

The tool

Generalities
@ BSP-WhyML extends WhyML with:

Mechanised Semantics of Subgroups 14/32

BSP Programming S Conclusion
000000000080 o) 000

The tool

CENEICIES

@ BSP-WhyML extends WhyML with:
e Additional instructions for parallel operations

Mechanised Semantics of Subgroups 14/32

BSP Programming SEETIE Conclusion
000000000080

The tool

CENEICIES

@ BSP-WhyML extends WhyML with:

e Additional instructions for parallel operations
e Additional notations in assertions about parallelism

Mechanised Semantics of Subgroups 14/32

BSP Programming
000000000080

The tool

CENEICIES

@ BSP-WhyML extends WhyML with:

e Additional instructions for parallel operations
e Additional notations in assertions about parallelism

@ Automatic transformation to Why code (sequentialisation)

Mechanised Semantics of Subgroups 14/32

BSP Programming
000000000080

The tool

CENEICIES

@ BSP-WhyML extends WhyML with:

e Additional instructions for parallel operations
e Additional notations in assertions about parallelism

@ Automatic transformation to Why code (sequentialisation)

V.

Main idea

Mechanised Semantics of Subgroups 14/32

BSP Programming SEETIE Conclusion
000000000080

The tool

CENEICIES

@ BSP-WhyML extends WhyML with:

e Additional instructions for parallel operations
e Additional notations in assertions about parallelism

@ Automatic transformation to Why code (sequentialisation)

V.

Main idea

P1 P2 P3 fori=1topdo

bl [b1]
l sync sync
SYNC « [swc |

fori=1topdo
[b2]

A\ 4

b2

sync sync

Mechanised Semantics of Subgroups 14/32

BSP Programming SEETIE
00000000000 e

The tool (2)

Language definition

BSPWhy = Why
| sync synchronisation and parameters
| push(x) Register x for global access
| put(e, x,y) Distant writing
| send(x,e) Message passing

Mechanised Semantics of Subgroups 15/32

BSP Programming SEETIE
00000000000 e

The tool (2)

Language definition

BSPWhy = Why
| sync synchronisation and parameters
| push(x) Register x for global access
| put(e, x,y) Distant writing
| send(x,e) Message passing

Logic extensions

Mechanised Semantics of Subgroups 15/32

BSP Programming SEETIE
00000000000 e

The tool (2)

Language definition

BSPWhy = Why
| sync synchronisation and parameters
| push(x) Register x for global access
| put(e, x,y) Distant writing
| send(x,e) Message passing

Logic extensions

@ x, to represent the value of x on the current processor

\

Mechanised Semantics of Subgroups 15/32

BSP Programming SEETIE
00000000000 e

The tool (2)

Language definition

BSPWhy = Why
| sync synchronisation and parameters
| push(x) Register x for global access
| put(e, x,y) Distant writing
| send(x,e) Message passing

Logic extensions

@ x, to represent the value of x on the current processor
@ x<i>,to represent the value of x on the processor i

\

Mechanised Semantics of Subgroups 15/32

BSP Programming SEETIE
00000000000 e

The tool (2)

Language definition

BSPWhy = Why
| sync synchronisation and parameters
| push(x) Register x for global access
| put(e, x,y) Distant writing
| send(x,e) Message passing

Logic extensions

@ x, to represent the value of x on the current processor
@ x<i>,to represent the value of x on the processor i
@ < x>, to represent the parallel variable x as an array

\

Mechanised Semantics of Subgroups 15/32

nclusion

Outline

© Mechanised Semantics

Mechanised Semantics of Subgroups 16/32

BSP Progra 0 Semantics Conclusion
©00000000000 000

Mechanised Semantics ...

Mechanised semantics allow for a better confidence

Mechanised Semantics of Subgroups 17/32

BSP Pro C Semantics Conclusion
000000000000

Mechanised Semantics ...

Mechanised semantics allow for a better confidence

Big-step/natural semantics
@ Big-step (natural) semantics are defined as a reference
@ Co-inductive semantics for infinite programs

Mechanised Semantics of Subgroups 17/32

Semantics Conclusion
©00000000000

Mechanised Semantics ...

Mechanised semantics allow for a better confidence

Big-step/natural semantics
@ Big-step (natural) semantics are defined as a reference
@ Co-inductive semantics for infinite programs

Small-step semantics
@ More precise simulation of the execution (interleaving)
@ Use of continuations (code after synchronisation)
@ More convenient to prove code transformation

Mechanised Semantics of Subgroups 17/32

BSP Pro C Semantics Conclusion
0e0000000000

Use of the proof assistant
@ All semantics defined in Coq

@ Inductive and Colnductive definitions

Mechanised Semantics of Subgroups 18/32

Semantics Conclusion
00000000000

Use of the proof assistant
@ All semantics defined in Coq
@ Inductive and Colnductive definitions

Proof of basic properties

@ Confluence of semantics
@ Exclusive between finite and infinite rules
@ Equivalence Big-step < Small-step

Mechanised Semantics of Subgroups 18/32

Semantics Conclusion
008000000000 000

Blg Step Semantics: Examples of Local Rules

s,pid |}’ s,i s,nprocs | s,p

s,e; M s,v dxev],el s,

sletx=eine |/ s’ 0

s,e; |/ 8/, SYNC(C, €)
s,letx=ejine ||/ s, SYNC(C,let x = € in &)

s,el’ s’, SYNC(C, ¢)
s,x :=e |/ s, SYNC(C,x :=¢€)

Mechanised Semantics of Subgroups 19/32

Semantics
000800000000

p Semantics (without subgroup)

Execution without synchronisation

H>-E ™ H->N

EREEN > (111

Mechanised Semantics of Subgroups 20/32

BSP Programm Semantics Conclusion
000®00000000 C

Big-Step Semantics (without subgroup)

Execution without synchronisation

H>-E ™ H->N

EREEN > (111

Execution with synchronisation

Comm
B> W~ GEEE — OO
[(ITTTT] — [

BN > [([[1T1]

Mechanised Semantics of Subgroups 20/32

Semantics L,omluq\om
0000@0000000 8

D| erglng Big-Step Semantics (without subgroup)

i s, el

((S0,€0); - - -5 (Sp—1,€p-1)) oo

Mechanised Semantics of Subgroups 21/32

Semantics L,omluq\om
0000@0000000 8

D| erglng Big-Step Semantics (without subgroup)

i s, el

((S0,€0); - - -5 (Sp—1,€p-1)) oo

Vi si,ei |’ s, SYNC(e)) AllComm{((sy, €))---,(Sp_1,€p_1))} Voo

<(507 eo), 00y (SP—1) €p—1)> Yoo

Mechanised Semantics of Subgroups 21/32

BSP Programm Semantics
00000®000000

all-Step Semantics (without subgroup)

Naive solutions

@ (...(s;,bsp_sync;e)...) = (...(s},€)...)
= Impossible to evaluate: if b then bsp_sync else e
@ s,bsp_sync . s, Wait(skip)
(...(sj, Wait(e))...) = (...(si,&i)...)(Tesson, Loulergue)
= Impossible to evaluate: (e; bsp_sync); e,
@ Congruence “(e;; bsp_sync); e; = ey; (bsp_sync; &;)” (Fortin, Gava)
@ Use of contexis (... A[bsp_sync]...)

v

Mechanised Semantics of Subgroups 22/32

Semantics

O0000@000000

Small-Step Semantics (without subgroup)

Naive solutions

@ (...(s;,bsp_sync;e)...) = (...(s},€)...)
= Impossible to evaluate: if b then bsp_sync else e
@ s,bsp_sync . s, Wait(skip)
(...(s;, Wait(e))...) — (... (si,€j)...)(Tesson, Loulergue)
= Impossible to evaluate: (e; bsp_sync); e,
@ Congruence “(e;; bsp_sync); e; = ey; (bsp_sync; &;)” (Fortin, Gava)
@ Use of contexis (... Albsp_sync]...)

Chosen solution: continuations (a la Blazy/Leroy)

S,NProcsex — s, pex
siletx=ejineex s eje(letx=_ine)ex

s,ve(letx=_ine)ex > s[x« v],eex

v

Mechanised Semantics of Subgroups 22/32

Semantics
00000000000

Small-Step Semantics (without subgroup)

Local execution

Mechanised Semantics of Subgroups 23/32

Semantics
00000000000

mall-Step Semantics (without subgroup)

Local execution

Synchronisation

Comm
— [T

— [T

Mechanised Semantics of Subgroups 23/32

Machine execution

Semantics

000000080000

Mechanised Semantics of Subgroups

24 /32

Semantics
00000000 e000

Big-Step Semantics with Subgroup Synchronisation

One synchronisation (Diamond)

Comm

> H-> [sIs] —> [
(T —

BN > [[[[T1]

Mechanised Semantics of Subgroups 25/32

BSP Programr Semantics Comluswm
000000008000

Big-Step Semantics with Subgroup Synchronlsatlon

One synchronisation (Diamond)

Comm

> H-> [sIs] —> [
M. — _

BN > [[[[T1]

All synchronisations (AllSub)
H>G H-> 5 % [T

Comm

>0 H->[—DED
i1l — _

BN > [([[1T]

4

Mechanised Semantics of Subgroups 25/32

BSP Programmin Semantics Conclusion
000000000800

Big-Step Semantics with Subgroup Synchronisation

Diamond variation:

3CVie C sj,e | s/, SYNC(C,¢!)
Commbia{C, (), &), - -- (S,_1,65_1)} Yoiam (555 Vo), - - - (S5 _1, Vp—1)
(50, €0); - - - (Sp—1,€p—1) Yiam (555 Vo), - - - (Sp—1, Vp—1)

Mechanised Semantics of Subgroups 26/32

Semantics
000000000800

Big-Step Semantics with Subgroup Synchronisation

Diamond variation:

3CVie C sj,e | s/, SYNC(C,¢!)
Commbia{C, (), &), - -- (S,_1,65_1)} Yoiam (555 Vo), - - - (S5 _1, Vp—1)
(50, €0); - - - (Sp—1,€p—1) Yiam (555 Vo), - - - (Sp—1, Vp—1)

AlISub variation:

{0,...,.p—1}=N®C;®---® C ViECj s,-7e,-U’s SYNC(C s I) vieN s,-,eiufslf,\(
ACOMMSUB{C; ... i, v, (5h, &), (5h_1+ &)} bar (s o), (Sf1: Vp1)

(S0, €0); - - (Sp—1,€p—1) bau (So,Vo) - (Sp_15 Vp—1)

Mechanised Semantics of Subgroups 26/32

Semantics
000000000800

Big-Step Semantics with Subgroup Synchronisation

Diamond variation:

3CVie C sj,e | s/, SYNC(C,¢!)
Commbia{C, (), &), - -- (S,_1,65_1)} Yoiam (555 Vo), - - - (S5 _1, Vp—1)
(50, €0); - - - (Sp—1,€p—1) Yiam (555 Vo), - - - (Sp—1, Vp—1)

AlISub variation:

{0,...,.p—1}=N®C;®---® C ViECj s,-7e,-U’s SYNC(C s I) vieN s,-,eiufslf,\(
ACOMMSUB{C; ... i, v, (5h, &), (5h_1+ &)} bar (s o), (Sf1: Vp1)

(S0, €0); - - (Sp—1,€p—1) bau (So,Vo) - (Sp_15 Vp—1)

Diverging rules follow these rules

Mechanised Semantics of Subgroups 26/32

Semantics L,omluq\om
000000000080

Small -Step Semantics with Subgroup Synchronlsatlon

NP /
Si,eje K] — §;,€; 0K

(. (sneior),...)) = (.. .(She er),...)

Mechanised Semantics of Subgroups 27/32

Semantics
000000000080

Small-Step Semantics with Subgroup Synchronisation

NP /
Si,eje K] — §;,€; 0K

(. (sneior),...)) = (.. .(She er),...)

dCVie C O; = bsp_sync C e x;
(50, O0). - (Sp—1, Op—1)) — CommDia{C, (S, Q). - -, (Sp—1, Op—1))}

Mechanised Semantics of Subgroups 27/32

Semantics Conclusion
00000000000e

Results

Properties about semantics
@ All semantics are confluent (Lemmas 1,2,7)
@ Finite and diverging rules are mutually exclusive (4, 5)
@ Finite Big-step and small-step semantics are equivalent (6)
@ Two equivalent semantics for subgroup synchronisation (3)

Mechanised Semantics of Subgroups 28/32

BSP Programmin Semantics Conclusion
00000000000e

Results

Properties about semantics
@ All semantics are confluent (Lemmas 1,2,7)
@ Finite and diverging rules are mutually exclusive (4, 5)
@ Finite Big-step and small-step semantics are equivalent (6)
@ Two equivalent semantics for subgroup synchronisation (3)

Benchmarks
Language Rules | 1 2 8 4 5 6 7 ALL
Our Why-ML 140 40 * * | 23 10 |90 | 26 670

BSP-Why-ML 270 130 * * | 66 22 | 350 | 100 | 1300
With Subgroups | 320 * 416 | 531 | 85 35 | 490 | 446 | 1500
CompCert 513 1700 | * = | 1200 | 100 | ? 1800 | Big
IMP 30 12 * * 14 8 53 11 135

Mechanised Semantics of Subgroups 28/32

Semantics Conclusion
00000000000e

Results

Properties about semantics
@ All semantics are confluent (Lemmas 1,2,7)
@ Finite and diverging rules are mutually exclusive (4, 5)

@ Finite Big-step and small-step
Analysis

@ Work(BSP-With-Subgroup) = 10 ® Work(core-seg-language)
@ C language = 10 years of work for team
© Next talk = 100 years (work for C+BSP+Subgroups)

BSP-Why-ML 270 130 * * | 66 22 | 350 | 100 | 1300
With Subgroups | 320 * 416 | 531 | 85 35 | 490 | 446 | 1500
CompCert 513 1700 | * = | 1200 | 100 | ? 1800 | Big
IMP 30 12 * * 14 8 53 11 135

semantics are equivalent (6

Mechanised Semantics of Subgroups 28/32

BSP Programmin E Conclusion

Outline

e Conclusion

Mechanised Semantics of Sub 29/32

Conclusion
@00

Conclusion

Mechanised Semantics of Subgroups 30/32

BSP Pro C SEETIE Conclusion
@00

Conclusion

@ BSP-WHY-ML is a BSP extension of WHY-ML

Mechanised Semantics of Subgroups 30/32

Conclusion
@00

Conclusion

@ BSP-WHY-ML is a BSP extension of WHY-ML
@ BSP-WHY programs are transformed into WHY programs

Mechanised Semantics of Subgroups 30/32

Conclusion
@00

Conclusion

@ BSP-WHY-ML is a BSP extension of WHY-ML
@ BSP-WHY programs are transformed into WHY programs
@ Subgroups take into account hierarchical architectures

Mechanised Semantics of Subgroups 30/32

Conclusion
@00

Conclusion

@ BSP-WHY-ML is a BSP extension of WHY-ML
@ BSP-WHY programs are transformed into WHY programs
@ Subgroups take into account hierarchical architectures

Coq semantics

Mechanised Semantics of Subgroups 30/32

Conclusion
@00

Conclusion

@ BSP-WHY-ML is a BSP extension of WHY-ML
@ BSP-WHY programs are transformed into WHY programs
@ Subgroups take into account hierarchical architectures

Coq semantics

@ 2 big-steps and small-step semantics

Mechanised Semantics of Subgroups 30/32

Conclusion
@00

Conclusion

@ BSP-WHY-ML is a BSP extension of WHY-ML
@ BSP-WHY programs are transformed into WHY programs
@ Subgroups take into account hierarchical architectures

Coq semantics

@ 2 big-steps and small-step semantics
@ Proofs of equivalence, confluence, exclusive, etc.

Mechanised Semantics of Subgroups 30/32

Conclusion
@00

Conclusion

@ BSP-WHY-ML is a BSP extension of WHY-ML
@ BSP-WHY programs are transformed into WHY programs
@ Subgroups take into account hierarchical architectures

Coq semantics

@ 2 big-steps and small-step semantics
@ Proofs of equivalence, confluence, exclusive, etc.
@ That do not scale ! (sizes of the proofs)

Mechanised Semantics of Subgroups 30/32

Conclusion
(o] le}

Perspectives (Ongoing/Future Work)

Close to this subject
@ Application to graph algorithms (Big-Data)
@ Fully Mechanised BSP-WHY (diverging rules)
@ Find how to better automate the proofs = less human work
@ Forget C, switch to a higher-level language such as Java

Mechanised Semantics of Subgroups 31/32

Conclusion
(o] le}

Perspectives (Ongoing/Future Work)

Close to this subject
@ Application to graph algorithms (Big-Data)
@ Fully Mechanised BSP-WHY (diverging rules)
@ Find how to better automate the proofs = less human work
@ Forget C, switch to a higher-level language such as Java

Long term (team)
@ Algorithms, semantics and verification tools for multi-ML
@ Fully verified multi-BSP model checker ?
@ Application to graph algorithms ?
@ BSP/Skeleton abstract interpretation

Mechanised Semantics of Subgroups 31/32

Merci !

	BSP Programming
	Mechanised Semantics
	Conclusion

