Mechanised Semantics of BSP Routines with Subgroup Synchronisation

Jean Fortin & Frédéric Gava

Laboratory of Algorithms, Complexity and Logic (LACL) University of Paris-East

2 Mechanised Semantics

Bridging Model: Bulk Synchronous Parallelism (BSP)

The BSP computer

Defined by:

- p pairs CPU/memory
- Communication network (g)
- Synchronisation unit (L
- Super-steps execution

Properties:

Bridging Model: Bulk Synchronous Parallelism (BSP)

The BSP computer

Defined by:

- p pairs CPU/memory
- Communication network (g)
- Synchronisation unit (L
- Super-steps execution

Properties:

Bridging Model: Bulk Synchronous Parallelism (BSP)

The BSP computer

Defined by:

- p pairs CPU/memory
- Communication network (g)
- Synchronisation unit (L)
- Super-steps execution

Properties:

Bridging Model: Bulk Synchronous Parallelism (BSP)

Semantics

The BSP computer

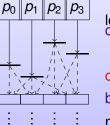
Defined by:

- p pairs CPU/memory
- Communication network (g)
- Synchronisation unit (L)
- Super-steps execution

Properties:

"Confluent"

"Deadlock-free"



local computations

communication (⊗g) barrier (⊕L) next super-step

Conclusion

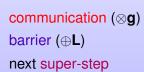
The BSP computer

Defined by:

- p pairs CPU/memory
- Communication network (g)
- Synchronisation unit (L)
- Super-steps execution

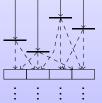
Properties:

- "Confluent"
- "Deadlock-free"
- Predictable performances



local

computations



 p_0

Bridging Model: Bulk Synchronous Parallelism (BSP)

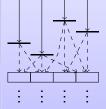
The BSP computer

Defined by:

- p pairs CPU/memory
- Communication network (g)
- Synchronisation unit (L)
- Super-steps execution

Properties:

- "Confluent"
- "Deadlock-free"
- Predictable performances



Conclusion

Semantics

 p_0

Bridging Model: Bulk Synchronous Parallelism (BSP)

Bridging Model: Bulk Synchronous Parallelism (BSP)

The BSP computer

Defined by:

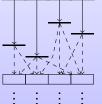
- p pairs CPU/memory
- Communication network (g)
- Synchronisation unit (L)
- Super-steps execution

Properties:

- "Confluent"
- "Deadlock-free"
- Predictable performances

local

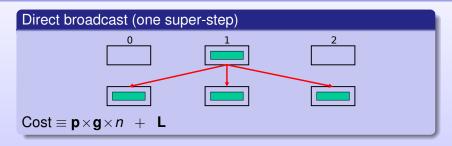
computations



 p_0

Conclusion

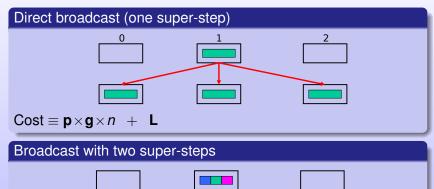
Examples: broadcasting a values

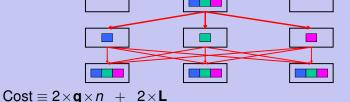


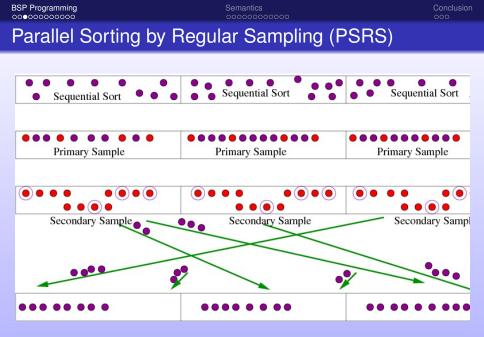
BSP Programming	
00000000000	

Conclusion

Examples: broadcasting a values







BSP Imperative Programming

- Dedicated Languages: NestStep, BSP++, BSP-Python, ...
- BSPLib for C and Java
- BSPGPU, Ct, Hamma, JBSP, JPUB, ...
- MPI collective operations

BSP Imperative Programming

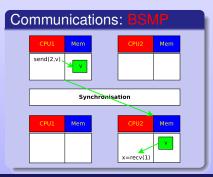
- Dedicated Languages: NestStep, BSP++, BSP-Python, ...
- BSPLib for C and Java
- BSPGPU, Ct, Hamma, JBSP, JPUB, ...
 - MPI collective operations

BSP Imperative Programming

- Dedicated Languages: NestStep, BSP++, BSP-Python, ...
- BSPLib for C and Java
- BSPGPU, Ct, Hamma, JBSP, JPUB, ...
- MPI collective operations

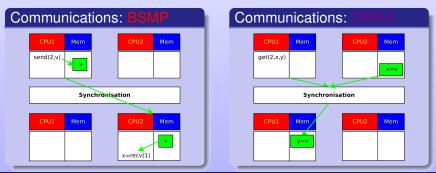
BSP Imperative Programming

- Dedicated Languages: NestStep, BSP++, BSP-Python, ...
- BSPLib for C and Java
- BSPGPU, Ct, Hamma, JBSP, JPUB, ...
- MPI collective operations



BSP Imperative Programming

- Dedicated Languages: NestStep, BSP++, BSP-Python, ...
- BSPLib for C and Java
- BSPGPU, Ct, Hamma, JBSP, JPUB, ...
- MPI collective operations



BSMP and DRI

- Typical **BSMP** routines:
 - bsp_send(grp,dest,buffer,size)
 - bsp_nmsgs(grp)
 - msg* bsp_findmsg(grp,proc_id,index)
- Typical DRMA routines:
 - bsp_push_reg(grp,ident,size)
 - bsp_get(grp,srcPID,src,offset,dest,nbytes)

bsp_sync(grp) (barrier)

collective operations

MPI_Scatter(sendbuf,sendcount,sendtype,recvbuf,recvcount,recvtype,root,comm

BSMP and DRI

- Typical **BSMP** routines:
 - bsp_send(grp,dest,buffer,size)
 - bsp_nmsgs(grp)
 - msg* bsp_findmsg(grp,proc_id,index)
- Typical DRMA routines:
 - bsp_push_reg(grp,ident,size)
 - bsp_get(grp,srcPID,src,offset,dest,nbytes)

• bsp_sync(grp) (barrier)

collective operations

MPI_Scatter(sendbuf,sendcount,sendtype,recvbuf,recvcount,recvtype,root,comm)

MPI_Gather(sendbuf,sendcount,sendtype,recvbuf,recvcount,recvtype,root,comm)

BSMP and DRI

- Typical **BSMP** routines:
 - bsp_send(grp,dest,buffer,size)
 - bsp_nmsgs(grp)
 - msg* bsp_findmsg(grp,proc_id,index)
- Typical DRMA routines:
 - bsp_push_reg(grp,ident,size)
 - bsp_get(grp,srcPID,src,offset,dest,nbytes)

• bsp_sync(grp) (barrier)

collective operations

MPI_Scatter(sendbuf,sendcount,sendtype,recvbuf,recvcount,recvtype,root,comm)

MPI_Gather(sendbuf,sendcount,sendtype,recvbuf,recvcount,recvtype,root,comm)

BSMP and DRI

- Typical **BSMP** routines:
 - bsp_send(grp,dest,buffer,size)
 - bsp_nmsgs(grp)
 - msg* bsp_findmsg(grp,proc_id,index)
- Typical DRMA routines:
 - bsp_push_reg(grp,ident,size)
 - bsp_get(grp,srcPID,src,offset,dest,nbytes)

• bsp_sync(grp) (barrier)

MPI collective operations

MPI_Scatter(sendbuf,sendcount,sendtype,recvbuf,recvcount,recvtype,root,comm)

MPI_Gather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)

BSP Programming	
000000000000	

Conclusion

Common Bugs in BSP Imperative Programs

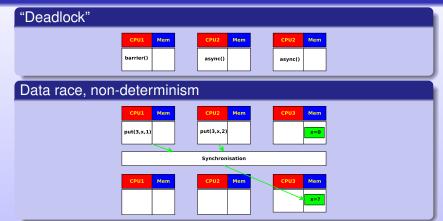
Data race, non-determinism

Out-of-bound errors

BSP Programming	
000000000000	

Conclusion

Common Bugs in BSP Imperative Programs

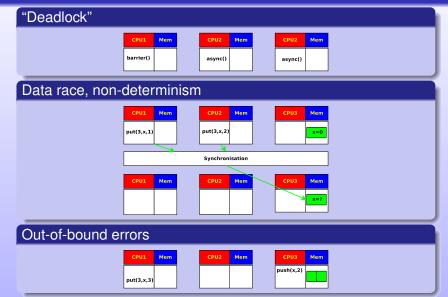


Out-of-bound errors

BSP Programming	
000000000000	

Conclusion

Common Bugs in BSP Imperative Programs



Conclusion

Subgroup Synchronisation

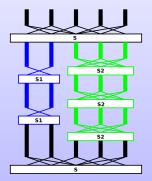
Allows the synchronisation of a subset of processes

Advantages

- Take advantage of hybrid models (better performance)
- Close to MPI's collective operations

Drawbacks

- More complex programs
- BSP cost model is lost



Conclusion

Subgroup Synchronisation

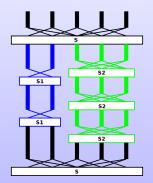
Allows the synchronisation of a subset of processes

Advantages

- Take advantage of hybrid models (better performance)
- Close to MPI's collective operations

Drawbacks

- More complex programs
- BSP cost model is lost



Conclusion

Subgroup Synchronisation

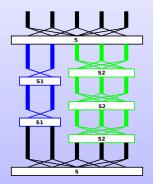
Allows the synchronisation of a subset of processes

Advantages

- Take advantage of hybrid models (better performance)
- Close to MPI's collective operations

Drawbacks

- More complex programs
- BSP cost model is lost



Using the PUB

- BSP_WORLD:t_bsp ⇒ all the processors
- bsp_dup(grp, dup) \Rightarrow a copy of a subgroup
- bsp_partition(grp,sub,nr,partition) ⇒ new
- bsp_done(grp) ⇒ destroy a subgroup

Using MI

- MPI_COMM_WORLD:MPI_Comm ⇒ all the processors
- MPI_Comm_dup(comm, newcomm) ⇒ Duplicates
- MPI_Comm_free(comm) ⇒ free a communicator
- MPI_Comm_split (comm, color, key, newcomm) ⇒
 Creates new communicators based on colors and keys
- ... (merge, union, intersection, differences)

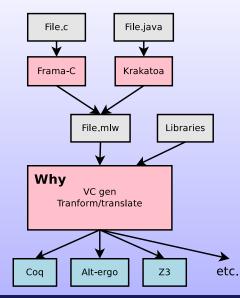
Using the PUB

- BSP_WORLD:t_bsp ⇒ all the processors
- bsp_dup(grp, dup) \Rightarrow a copy of a subgroup
- bsp_partition(grp,sub,nr,partition) ⇒ new
- bsp_done(grp) ⇒ destroy a subgroup

Using MPI

- MPI_COMM_WORLD:MPI_Comm ⇒ all the processors
- MPI_Comm_dup(comm, newcomm) ⇒ Duplicates
- MPI_Comm_free(comm) ⇒ free a communicator
- MPI_Comm_split (comm, color, key, newcomm) ⇒
 Creates new communicators based on colors and keys
- ... (merge, union, intersection, differences)

The Why tool



Conclusion

The whyme Language for Deductive Verification

```
let sqrt (n:int) =
  let count = ref 0 in
  let sum = ref 1 in
  while !sum < n do
    count \leftarrow!count + 1;
    sum \leftarrow |sum + 2 * |count + 1|
  done:
  !count
```

Conclusion

The WhyML Language for Deductive Verification

```
let sqrt (n:int) =
  \{n \ge 0\}
  let count = ref 0 in
  let sum = ref 1 in
  while !sum < n do
    count \leftarrow!count + 1;
    sum \leftarrow |sum + 2 * |count + 1|
  done:
  !count
  { result > 0 and
    result * result < n < (result+1)*(result+1) \}
```

Conclusion

The whyML Language for Deductive Verification

```
let sqrt (n:int) =
  \{n > 0\}
  let count = ref 0 in
  let sum = ref 1 in
  while !sum < n do
    { invariant count > 0 and n > count*count
              and sum = (count+1)*(count+1)
    count \leftarrow!count + 1;
    sum \leftarrow |sum + 2 * |count + 1|
  done:
  !count
  { result > 0 and
    result * result < n < (result+1)*(result+1) \}
```

Conclusion

The whyML Language for Deductive Verification

```
let sqrt (n:int) =
  \{n > 0\}
  let count = ref 0 in
  let sum = ref 1 in
  while !sum < n do
    { invariant count > 0 and n > count*count
              and sum = (count+1)*(count+1)
      variant n – sum }
    count \leftarrow !count + 1;
    sum \leftarrow |sum + 2 * |count + 1|
  done:
  !count
  { result > 0 and
    result * result < n < (result+1)*(result+1)
```

The **BSP-Why** tool

Generalities

- BSP-WhyML extends WhyML with:
 - Additional instructions for parallel operations
 - Additional notations in assertions about parallelism
- Automatic transformation to Why code (sequentialisation)

Generalities

• BSP-WhyML extends WhyML with:

- Additional instructions for parallel operations
- Additional notations in assertions about parallelism
- Automatic transformation to Why code (sequentialisation)

lain idea

Mechanised Semantics of Subgroups

Generalities

BSP-WhyML extends WhyML with:

- Additional instructions for parallel operations
- Additional notations in assertions about parallelism
- Automatic transformation to Why code (sequentialisation)

Main idea

Generalities

BSP-WhyML extends WhyML with:

- Additional instructions for parallel operations
- Additional notations in assertions about parallelism
- Automatic transformation to Why code (sequentialisation)

Main idea

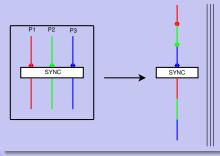
Generalities

- BSP-WhyML extends WhyML with:
 - Additional instructions for parallel operations
 - Additional notations in assertions about parallelism
- Automatic transformation to Why code (sequentialisation)

Main idea

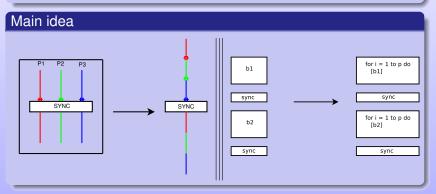
Generalities

- BSP-WhyML extends WhyML with:
 - Additional instructions for parallel operations
 - Additional notations in assertions about parallelism
- Automatic transformation to Why code (sequentialisation)



Generalities

- BSP-WhyML extends WhyML with:
 - Additional instructions for parallel operations
 - Additional notations in assertions about parallelism
- Automatic transformation to Why code (sequentialisation)



Language definition

synchronisation and parameters Register *x* for global access Distant writing Message passing

Logic extensions

x, to represent the value of x on the current processor
 x < l>, to represent the value of x on the processor l

Language definition

synchronisation and parameters Register *x* for global access Distant writing Message passing

Logic extensions

• *x*, to represent the value of *x* on the current processor

- x < i>, to represent the value of x on the processor i
- < x >, to represent the parallel variable x as an array

Language definition

synchronisation and parameters Register *x* for global access Distant writing Message passing

Logic extensions

• x, to represent the value of x on the current processor

- x < i>, to represent the value of x on the processor i
- <x>, to represent the parallel variable x as an array

Language definition

synchronisation and parameters Register *x* for global access Distant writing Message passing

Logic extensions

- x, to represent the value of x on the current processor
- *x* < *i*>, to represent the value of *x* on the processor *i*

• < x >, to represent the parallel variable x as an array

Language definition

synchronisation and parameters Register *x* for global access Distant writing Message passing

Logic extensions

- x, to represent the value of x on the current processor
- x < i>, to represent the value of x on the processor i
- <x>, to represent the parallel variable x as an array

Mechanised Semantics ...

Mechanised semantics allow for a better confidence

Big-step/natural semantics

- Big-step (natural) semantics are defined as a reference
- Co-inductive semantics for infinite programs

Small-step semantics

- More precise simulation of the execution (interleaving)
- Use of continuations (code after synchronisation)
- More convenient to prove code transformation

Mechanised Semantics ...

Mechanised semantics allow for a better confidence

Big-step/natural semantics

- Big-step (natural) semantics are defined as a reference
- Co-inductive semantics for infinite programs

Small-step semantics

- More precise simulation of the execution (interleaving)
- Use of continuations (code after synchronisation)
- More convenient to prove code transformation

Mechanised Semantics ...

Mechanised semantics allow for a better confidence

Big-step/natural semantics

- Big-step (natural) semantics are defined as a reference
- Co-inductive semantics for infinite programs

Small-step semantics

- More precise simulation of the execution (interleaving)
- Use of continuations (code after synchronisation)
- More convenient to prove code transformation

Use of the Coq proof assistant

- All semantics defined in Coq
- Inductive and CoInductive definitions

Proof of basic properties

- Confluence of semantics
- Exclusive between finite and infinite rules
- Equivalence Big-step ⇔ Small-step

Use of the Coq proof assistant

- All semantics defined in Coq
- Inductive and CoInductive definitions

Proof of basic properties

- Confluence of semantics
- Exclusive between finite and infinite rules
- Equivalence Big-step ⇔ Small-step

Conclusion

Big-Step Semantics: Examples of Local Rules

$$s, \mathsf{pid} \Downarrow^i s, i$$
 $\overline{s}, \mathsf{nprocs} \Downarrow^i s, \mathsf{p}$

$$\frac{s, e_1 \Downarrow^i s', v \qquad s'[x \leftarrow v], e_2 \Downarrow^i s'', o}{s, \text{let } x = e_1 \text{ in } e_2 \Downarrow^i s'', o}$$

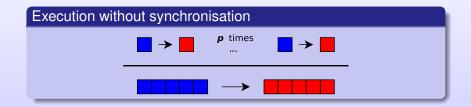
 $\frac{s, e_1 \Downarrow^i s', \text{SYNC}(C, e')}{s, \text{let } x = e_1 \text{ in } e_2 \Downarrow^i s', \text{SYNC}(C, \text{let } x = e' \text{ in } e_2)}$

$$\frac{s, e \Downarrow^{i} s', \mathsf{SYNC}(C, e')}{s, x := e \Downarrow^{i} s', \mathsf{SYNC}(C, x := e')}$$

BSP	Programming	

Conclusion

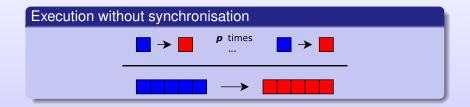
Big-Step Semantics (without subgroup)

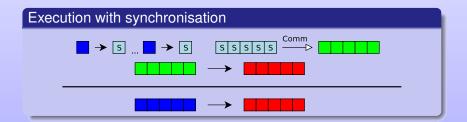


Programming	

Conclusion

Big-Step Semantics (without subgroup)





BSP Programming

Semantics

Conclusion

Diverging Big-Step Semantics (without subgroup)

$$\frac{\exists i \quad s_i, e_i \Downarrow_{\infty}^i}{\langle (s_0, e_0), \dots, (s_{\mathbf{p}-1}, e_{\mathbf{p}-1}) \rangle \Downarrow_{\infty}}$$

 $\begin{array}{l} \forall i \quad s_i, e_i \Downarrow^i s_i', \mathsf{SYNC}(e_i') \quad \mathsf{AllComm}\{\langle (s_0', e_0'), \dots, (s_{\mathsf{p}-1}', e_{\mathsf{p}-1}') \rangle \} \Downarrow_{\infty} \\ \\ \langle (s_0, e_0), \dots, (s_{\mathsf{p}-1}, e_{\mathsf{p}-1}) \rangle \Downarrow_{\infty} \end{array}$

BSP Programming

Semantics

Conclusion

Diverging Big-Step Semantics (without subgroup)

$$\frac{\exists i \quad s_i, e_i \Downarrow_{\infty}^i}{\langle (s_0, e_0), \dots, (s_{\mathbf{p}-1}, e_{\mathbf{p}-1}) \rangle \Downarrow_{\infty}}$$

 $\begin{array}{c|c} \forall i \quad s_i, e_i \Downarrow^i s'_i, \mathsf{SYNC}(e'_i) & \mathsf{AllComm}\{\langle (s'_0, e'_0), \dots, (s'_{p-1}, e'_{p-1}) \rangle\} \Downarrow_{\infty} \\ \\ \hline & \langle (s_0, e_0), \dots, (s_{p-1}, e_{p-1}) \rangle \Downarrow_{\infty} \end{array}$

Small-Step Semantics (without subgroup)

Naive solutions

- $\langle \dots (s_i, bsp_sync; e_i) \dots \rangle \rightharpoonup \langle \dots (s'_i, e_i) \dots \rangle$ \Rightarrow Impossible to evaluate: if b then bsp_sync else e
- s, bsp_sync $\stackrel{i}{\rightharpoonup} s$, Wait(skip) $\langle \dots (s_i, Wait(e_i)) \dots \rangle \rightharpoonup \langle \dots (s_i, e_i) \dots \rangle$ (Tesson, Loulergue) \Rightarrow Impossible to evaluate: $(e_1; bsp_sync); e_2$
- Congruence " $(e_1; bsp_sync); e_2 \equiv e_1; (bsp_sync; e_2)$ " (Fortin, Gava)
- Use of contexts $\langle \dots \Delta[bsp_sync] \dots \rangle$

Chosen solution: continuations (à la Blazy/Leroy)

 $s, \operatorname{nprocs} \bullet \kappa \xrightarrow{i} s, p \bullet \kappa$ $s, \operatorname{let} x = e_1 \operatorname{in} e_2 \bullet \kappa \xrightarrow{i} s, e_1 \bullet (\operatorname{let} x = _\operatorname{in} e_2) \bullet \kappa$ $s, v \bullet (\operatorname{let} x = _\operatorname{in} e_2) \bullet \kappa \xrightarrow{i} s[x \leftarrow v], e_2 \bullet \kappa$

Small-Step Semantics (without subgroup)

Naive solutions

- $\langle \dots (s_i, bsp_sync; e_i) \dots \rangle \rightharpoonup \langle \dots (s'_i, e_i) \dots \rangle$ \Rightarrow Impossible to evaluate: if b then bsp sync else e
- s, bsp_sync $\stackrel{i}{\rightharpoonup} s$, Wait(skip) $\langle \dots (s_i, Wait(e_i)) \dots \rangle \rightharpoonup \langle \dots (s_i, e_i) \dots \rangle$ (Tesson, Loulergue) \Rightarrow Impossible to evaluate: $(e_1; bsp_sync); e_2$
- Congruence " $(e_1; bsp_sync); e_2 \equiv e_1; (bsp_sync; e_2)$ " (Fortin, Gava)
- Use of contexts $\langle \dots \Delta[bsp_sync] \dots \rangle$

Chosen solution: continuations (à la Blazy/Leroy)

$$s, \operatorname{nprocs} \bullet \kappa \xrightarrow{i} s, p \bullet \kappa$$

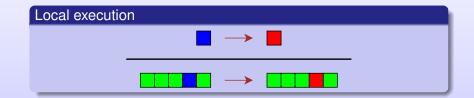
$$s, \operatorname{let} x = e_1 \operatorname{in} e_2 \bullet \kappa \xrightarrow{i} s, e_1 \bullet (\operatorname{let} x = _\operatorname{in} e_2) \bullet \kappa$$

$$s, v \bullet (\operatorname{let} x = _\operatorname{in} e_2) \bullet \kappa \xrightarrow{i} s[x \leftarrow v], e_2 \bullet \kappa$$

BSP	Programming	

Conclusion

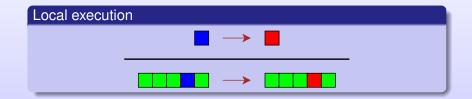
Small-Step Semantics (without subgroup)

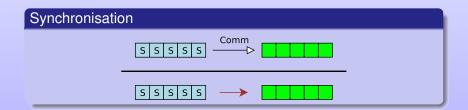


BSP	Programming

Conclusion

Small-Step Semantics (without subgroup)

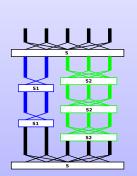




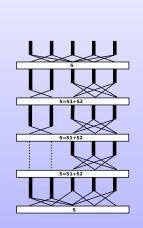
Conclusion

Big-Step Semantics with Subgroup Synchronisation

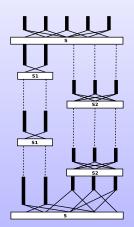
AllSub option

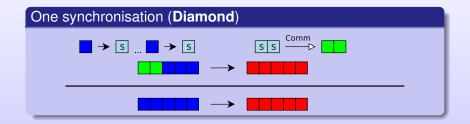


Machine execution

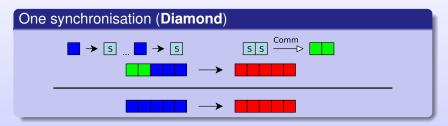


Diamond option





Big-Sten	Semantics with	Subaroup Sv	Inchronisatio	hn
		000000000000		
BSP Programming		Semantics		Conclusion



All synchronisations (AllSub)	
$ \begin{array}{c} \bullet & \bullet $	

BSP	Programming	

Big-Step Semantics with Subgroup Synchronisation

Diamond variation:

 $\exists C \forall i \in C \quad s_i, e_i \Downarrow^i s'_i, \mathsf{SYNC}(C, e'_i) \\ \mathbf{CommDia}\{C, (s'_0, e'_0), \dots, (s'_{p-1}, e'_{p-1})\} \Downarrow_{Diam} (s''_0, v_0), \dots, (s''_{p-1}, v_{p-1}) \\ \hline (s_0, e_0), \dots, (s_{p-1}, e_{p-1}) \Downarrow_{Diam} (s''_0, v_0), \dots, (s''_{p-1}, v_{p-1})$

AllSub variation:

 $\{0, \dots, \mathbf{p} - 1\} = N \oplus C_1 \oplus \dots \oplus C_k \qquad \forall i \in C_j \quad s_i, e_i \Downarrow^j s'_i, \mathsf{SYNC}(C_j, e'_i) \qquad \forall i \in N \quad s_i, e_i \Downarrow^j s'_i, \mathsf{v} \in \mathcal{A}$ $\mathsf{AllCommSub}\{C_1 \dots C_k, v, (s'_0, e'_0), \dots (s'_{\mathbf{p}-1}, e'_{\mathbf{p}-1})\} \Downarrow_{\mathcal{A} I I} (s''_0, v_0), \dots (s''_{\mathbf{p}-1}, v_{\mathbf{p}-1})$ $(s_0, e_0), \dots (s_{\mathbf{p}-1}, e_{\mathbf{p}-1}) \Downarrow_{\mathcal{A} I I} (s''_0, v_0), \dots (s''_{\mathbf{p}-1}, v_{\mathbf{p}-1})$

Diverging rules follow these rules

Big-Step Semantics with Subgroup Synchronisation

Diamond variation:

$$\exists C \ \forall i \in C \quad s_i, e_i \ \Downarrow^i \ s'_i, SYNC(C, e'_i) \\ \hline \textbf{CommDia}\{C, (s'_0, e'_0), \dots, (s'_{p-1}, e'_{p-1})\} \ \Downarrow_{Diam} \ (s''_0, v_0), \dots, (s''_{p-1}, v_{p-1}) \\ \hline (s_0, e_0), \dots, (s_{p-1}, e_{p-1}) \ \Downarrow_{Diam} \ (s''_0, v_0), \dots, (s''_{p-1}, v_{p-1}) \\ \hline \end{cases}$$

AllSub variation:

$$\{0, \dots, \mathbf{p} - 1\} = N \oplus C_1 \oplus \dots \oplus C_k \quad \forall i \in C_j \quad s_i, e_i \Downarrow^i s'_i, \mathsf{SYNC}(C_j, e'_i) \quad \forall i \in N \quad s_i, e_i \Downarrow^i s'_i, v_i \in \mathcal{N}$$

$$\mathsf{AllCommSub}\{C_1 \dots C_k, v, (s'_0, e'_0), \dots (s'_{p-1}, e'_{p-1})\} \Downarrow_{\mathcal{A}||} (s''_0, v_0), \dots (s''_{p-1}, v_{p-1})$$

$$(s_0, e_0), \dots (s_{p-1}, e_{p-1}) \Downarrow_{\mathcal{A}||} (s''_0, v_0), \dots (s''_{p-1}, v_{p-1})$$

Diverging rules follow these rules

Big-Step Semantics with Subgroup Synchronisation

Diamond variation:

$$\exists C \ \forall i \in C \quad s_i, e_i \ \Downarrow^i \ s'_i, SYNC(C, e'_i) \\ \hline \textbf{CommDia}\{C, (s'_0, e'_0), \dots, (s'_{p-1}, e'_{p-1})\} \ \Downarrow_{Diam} \ (s''_0, v_0), \dots, (s''_{p-1}, v_{p-1}) \\ \hline (s_0, e_0), \dots, (s_{p-1}, e_{p-1}) \ \Downarrow_{Diam} \ (s''_0, v_0), \dots, (s''_{p-1}, v_{p-1}) \\ \hline \end{cases}$$

AllSub variation:

$$\{0, \dots, \mathbf{p} - 1\} = N \oplus C_1 \oplus \dots \oplus C_k \quad \forall i \in C_j \quad s_i, e_i \Downarrow^i s'_i, \mathsf{SYNC}(C_j, e'_i) \quad \forall i \in N \quad s_i, e_i \Downarrow^i s'_i, v_i \in \mathcal{N}$$

$$\mathsf{AllCommSub}\{C_1 \dots C_k, v, (s'_0, e'_0), \dots (s'_{p-1}, e'_{p-1})\} \Downarrow_{\mathcal{A}||} (s''_0, v_0), \dots (s''_{p-1}, v_{p-1})$$

$$(s_0, e_0), \dots (s_{p-1}, e_{p-1}) \Downarrow_{\mathcal{A}||} (s''_0, v_0), \dots (s''_{p-1}, v_{p-1})$$

Diverging rules follow these rules

BSP	Programming	
000	000000000	

Conclusion

Small-Step Semantics with Subgroup Synchronisation

$$\frac{\boldsymbol{s}_{i}, \boldsymbol{e}_{i} \bullet \kappa_{i} \stackrel{i}{\rightharpoonup} \boldsymbol{s}_{i}', \boldsymbol{e}_{i}' \bullet \kappa_{i}'}{\langle (\dots, (\boldsymbol{s}_{i}, \boldsymbol{e}_{i} \bullet \kappa_{i}), \dots) \rangle \rightharpoonup \langle \dots, (\boldsymbol{s}_{i}', \boldsymbol{e}_{i}' \bullet \kappa_{i}'), \dots \rangle}$$

 $\frac{\exists C \ \forall i \in C \quad O_i \equiv \mathsf{bsp_sync} \ C \bullet \kappa_i}{\langle (s_0, O_0), \dots, (s_{\mathsf{p}-1}, O_{\mathsf{p}-1}) \rangle \rightharpoonup \mathsf{CommDia}\{C, \langle (s_0, O_0), \dots, (s_{\mathsf{p}-1}, O_{\mathsf{p}-1}) \rangle \}}$

BSP	Programming	
000	000000000	

Conclusion

Small-Step Semantics with Subgroup Synchronisation

$$\frac{\boldsymbol{s}_{i}, \boldsymbol{e}_{i} \bullet \kappa_{i} \stackrel{i}{\rightharpoonup} \boldsymbol{s}'_{i}, \boldsymbol{e}'_{i} \bullet \kappa'_{i}}{\langle (\dots, (\boldsymbol{s}_{i}, \boldsymbol{e}_{i} \bullet \kappa_{i}), \dots) \rangle \rightharpoonup \langle \dots, (\boldsymbol{s}'_{i}, \boldsymbol{e}'_{i} \bullet \kappa'_{i}), \dots \rangle}$$

$\frac{\exists C \ \forall i \in C \qquad O_i \equiv \texttt{bsp_sync} \ C \bullet \kappa_i}{\langle (s_0, O_0), \dots, (s_{p-1}, O_{p-1}) \rangle \rightharpoonup \texttt{CommDia} \{ C, \langle (s_0, O_0), \dots, (s_{p-1}, O_{p-1}) \rangle \}}$

Results

Properties about semantics

- All semantics are confluent (Lemmas 1,2,7)
- Finite and diverging rules are mutually exclusive (4, 5)
- Finite Big-step and small-step semantics are equivalent (6)
- Two equivalent semantics for subgroup synchronisation (3)

Results

Properties about semantics

- All semantics are confluent (Lemmas 1,2,7)
- Finite and diverging rules are mutually exclusive (4, 5)
- Finite Big-step and small-step semantics are equivalent (6)
- Two equivalent semantics for subgroup synchronisation (3)

Benchmarks

Language	Rules	1	2	3	4	5	6	7	ALL
Our Why-ML	140	40	*	*	23	10	90	26	670
BSP-Why-ML	270	130	*	*	66	22	350	100	1300
With Subgroups	320	*	416	531	85	35	490	446	1500
CompCert	513	1700	*	*	1200	100	?	1800	Big
IMP	30	12	*	*	14	8	53	11	135

Results

Properties about semantics

- All semantics are confluent (Lemmas 1,2,7)
- Finite and diverging rules are mutually exclusive (4, 5)

• Finite Big-step and small-step semantics are equivalent (6) Analysis

- **Work**(BSP-With-Subgroup) \equiv 10 \otimes Work(core-seq-language)
- 2 C language \Rightarrow 10 years of work for team
- **O** Next talk \Rightarrow 100 years (work for C+BSP+Subgroups)

BSP-Why-ML	270	130	*	*	66	22	350	100	1300
With Subgroups	320	*	416	531	85	35	490	446	1500
CompCert	513	1700	*	*	1200	100	?	1800	Big
IMP	30	12	*	*	14	8	53	11	135

BSP-WHY-ML

- BSP-WHY-ML is a BSP extension of WHY-ML
- BSP-WHY programs are transformed into WHY programs
- Subgroups take into account hierarchical architectures

BSP-WHY-ML

- BSP-WHY-ML is a BSP extension of WHY-ML
- BSP-WHY programs are transformed into WHY programs
- Subgroups take into account hierarchical architectures

Coq semantics

e Proots of equ

BSP-WHY-ML

- BSP-WHY-ML is a BSP extension of WHY-ML
- BSP-WHY programs are transformed into WHY programs
- Subgroups take into account hierarchical architectures

BSP-WHY-ML

- BSP-WHY-ML is a BSP extension of WHY-ML
- BSP-WHY programs are transformed into WHY programs
- Subgroups take into account hierarchical architectures

Coq semantics

2 big-steps and small-step semantics

Proofs of equivalence, confluence, exclusive, etc.

BSP-WHY-ML

- BSP-WHY-ML is a BSP extension of WHY-ML
- BSP-WHY programs are transformed into WHY programs
- Subgroups take into account hierarchical architectures

- 2 big-steps and small-step semantics
- Proofs of equivalence, confluence, exclusive, etc.
- That do not scale ! (sizes of the proofs)

BSP-WHY-ML

- BSP-WHY-ML is a BSP extension of WHY-ML
- BSP-WHY programs are transformed into WHY programs
- Subgroups take into account hierarchical architectures

- 2 big-steps and small-step semantics
- Proofs of equivalence, confluence, exclusive, etc.
- That do not scale ! (sizes of the proofs)

BSP-WHY-ML

- BSP-WHY-ML is a BSP extension of WHY-ML
- BSP-WHY programs are transformed into WHY programs
- Subgroups take into account hierarchical architectures

- 2 big-steps and small-step semantics
- Proofs of equivalence, confluence, exclusive, etc.
- That do not scale ! (sizes of the proofs)

BSP-WHY-ML

- BSP-WHY-ML is a BSP extension of WHY-ML
- BSP-WHY programs are transformed into WHY programs
- Subgroups take into account hierarchical architectures

- 2 big-steps and small-step semantics
- Proofs of equivalence, confluence, exclusive, etc.
- That do not scale ! (sizes of the proofs)

Perspectives (Ongoing/Future Work)

Close to this subject

- Application to graph algorithms (Big-Data)
- Fully Mechanised BSP-WHY (diverging rules)
- Find how to better automate the proofs \Rightarrow less human work
- Forget C, switch to a higher-level language such as Java

Perspectives (Ongoing/Future Work)

Close to this subject

- Application to graph algorithms (Big-Data)
- Fully Mechanised BSP-WHY (diverging rules)
- Find how to better automate the proofs \Rightarrow less human work
- Forget C, switch to a higher-level language such as Java

Long term (team)

- Algorithms, semantics and verification tools for multi-ML
- Fully verified multi-BSP model checker ?
- Application to graph algorithms ?
- BSP/Skeleton abstract interpretation

Merci !