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BSP Programming Semantics Conclusion

Bridging Model: Bulk Synchronous Parallelism (BSP)

The BSP computer
Defined by:

p pairs CPU/memory
Communication network (g)
Synchronisation unit (L)
Super-steps execution

Properties:
“Confluent”
“Deadlock-free”
Predictable performances

local
computations

p0 p1 p2 p3

communication (⊗g)

barrier (⊕L)

next super-step
...

...
...

...
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BSP Programming Semantics Conclusion

Examples: broadcasting a values

Direct broadcast (one super-step)
10 2

Cost ≡ p×g×n + L

Broadcast with two super-steps

Cost ≡ 2×g×n + 2×L
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Parallel Sorting by Regular Sampling (PSRS)
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BSP Imperative Programming
Languages and libraries

1 Dedicated Languages: NestStep, BSP++, BSP-Python, . . .
2 BSPLib for C and Java
3 BSPGPU, Ct, Hamma, JBSP, JPUB, . . .
4 MPI collective operations

Communications: BSMP Communications: DRMA
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BSP Programming Semantics Conclusion

Examples of C primitives

BSMP and DRMA
Typical BSMP routines:

• bsp_send(grp,dest,buffer,size)
• bsp_nmsgs(grp)
• msg* bsp_findmsg(grp,proc_id,index)

Typical DRMA routines:
• bsp_push_reg(grp,ident,size)
• bsp_get(grp,srcPID,src,offset,dest,nbytes)

bsp_sync(grp) (barrier)

MPI collective operations
MPI_Scatter(sendbuf,sendcount,sendtype,recvbuf,recvcount,recvtype,root,comm)

MPI_Gather(sendbuf,sendcount,sendtype,recvbuf,recvcount,recvtype,root,comm)
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Common Bugs in BSP Imperative Programs
“Deadlock”

Data race, non-determinism

Out-of-bound errors
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Subgroup Synchronisation

Allows the synchronisation of a subset of processes

Advantages

Take advantage of hybrid
models (better performance)
Close to MPI’s collective
operations

Drawbacks
More complex programs
BSP cost model is lost

Mechanised Semantics of Subgroups 10 / 32



BSP Programming Semantics Conclusion

Subgroup Synchronisation

Allows the synchronisation of a subset of processes

Advantages

Take advantage of hybrid
models (better performance)
Close to MPI’s collective
operations

Drawbacks
More complex programs
BSP cost model is lost

Mechanised Semantics of Subgroups 10 / 32



BSP Programming Semantics Conclusion

Subgroup Synchronisation

Allows the synchronisation of a subset of processes

Advantages

Take advantage of hybrid
models (better performance)
Close to MPI’s collective
operations

Drawbacks
More complex programs
BSP cost model is lost

Mechanised Semantics of Subgroups 10 / 32
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Examples of C primitives

Using the PUB

BSP_WORLD:t_bsp⇒ all the processors
bsp_dup(grp,dup)⇒ a copy of a subgroup
bsp_partition(grp,sub,nr,partition)⇒ new
bsp_done(grp)⇒ destroy a subgroup

Using MPI

MPI_COMM_WORLD:MPI_Comm⇒ all the processors
MPI_Comm_dup(comm,newcomm)⇒ Duplicates
MPI_Comm_free(comm)⇒ free a communicator
MPI_Comm_split(comm,color,key,newcomm)⇒
Creates new communicators based on colors and keys
... (merge, union, intersection, differences)

Mechanised Semantics of Subgroups 11 / 32



BSP Programming Semantics Conclusion

Examples of C primitives

Using the PUB

BSP_WORLD:t_bsp⇒ all the processors
bsp_dup(grp,dup)⇒ a copy of a subgroup
bsp_partition(grp,sub,nr,partition)⇒ new
bsp_done(grp)⇒ destroy a subgroup

Using MPI

MPI_COMM_WORLD:MPI_Comm⇒ all the processors
MPI_Comm_dup(comm,newcomm)⇒ Duplicates
MPI_Comm_free(comm)⇒ free a communicator
MPI_Comm_split(comm,color,key,newcomm)⇒
Creates new communicators based on colors and keys
... (merge, union, intersection, differences)

Mechanised Semantics of Subgroups 11 / 32



BSP Programming Semantics Conclusion

The Why tool

Mechanised Semantics of Subgroups 12 / 32
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The WhyML Language for Deductive Verification

let sqrt (n:int) =

let count = ref 0 in
let sum = ref 1 in
while !sum ≤ n do

count←!count + 1;
sum←!sum + 2 ∗ !count + 1

done;
!count

{ n ≥ 0 }

{ result ≥ 0 and
result ∗ result ≤ n < (result+1)∗(result+1) }

{ invariant count ≥ 0 and n ≥ count∗count
and sum = (count+1)∗(count+1)

variant n − sum }
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The BSP-Why tool

Generalities
BSP-WhyML extends WhyML with:

• Additional instructions for parallel operations
• Additional notations in assertions about parallelism

Automatic transformation to Why code (sequentialisation)

Main idea

SYNC SYNC

P1 P2 P3
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The BSP-Why tool (2)

Language definition

BSPWhy ::= Why
| sync synchronisation and parameters
| push(x) Register x for global access
| put(e, x , y) Distant writing
| send(x ,e) Message passing

Logic extensions

x , to represent the value of x on the current processor
x< i>, to represent the value of x on the processor i
<x>, to represent the parallel variable x as an array
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Mechanised Semantics ...

Mechanised semantics allow for a better confidence

Big-step/natural semantics

Big-step (natural) semantics are defined as a reference
Co-inductive semantics for infinite programs

Small-step semantics
More precise simulation of the execution (interleaving)
Use of continuations (code after synchronisation)
More convenient to prove code transformation
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... In Coq

Use of the Coq proof assistant
All semantics defined in Coq

Inductive and CoInductive definitions

Proof of basic properties
Confluence of semantics
Exclusive between finite and infinite rules
Equivalence Big-step⇔ Small-step

Mechanised Semantics of Subgroups 18 / 32



BSP Programming Semantics Conclusion

... In Coq

Use of the Coq proof assistant
All semantics defined in Coq

Inductive and CoInductive definitions

Proof of basic properties
Confluence of semantics
Exclusive between finite and infinite rules
Equivalence Big-step⇔ Small-step

Mechanised Semantics of Subgroups 18 / 32



BSP Programming Semantics Conclusion

Big-Step Semantics: Examples of Local Rules

s,pid ⇓i s, i s,nprocs ⇓i s,p

s,e1 ⇓i s′, v s′[x ← v ],e2 ⇓i s′′,o
s, let x = e1 in e2 ⇓i s′′,o

s,e1 ⇓i s′,SYNC(C,e′)
s, let x = e1 in e2 ⇓i s′,SYNC(C, let x = e′ in e2)

s,e ⇓i s′,SYNC(C,e′)
s, x := e ⇓i s′,SYNC(C, x := e′)
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Big-Step Semantics (without subgroup)

Execution without synchronisation

Execution with synchronisation
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Big-Step Semantics (without subgroup)

Execution without synchronisation

Execution with synchronisation
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Diverging Big-Step Semantics (without subgroup)

∃i si ,ei ⇓i
∞

〈(s0,e0), . . . , (sp−1,ep−1)〉 ⇓∞

∀i si ,ei ⇓i s′i ,SYNC(e′i ) AllComm{〈(s′0,e′0), . . . , (s′p−1,e
′
p−1)〉} ⇓∞

〈(s0,e0), . . . , (sp−1,ep−1)〉 ⇓∞
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Small-Step Semantics (without subgroup)

Naive solutions
〈. . . (si ,bsp_sync; ei) . . . 〉⇀ 〈. . . (s′i ,ei) . . . 〉
⇒ Impossible to evaluate: if b then bsp_sync else e
s,bsp_sync i

⇀ s,Wait(skip)
〈. . . (si ,Wait(ei)) . . . 〉⇀ 〈. . . (si ,ei) . . . 〉(Tesson, Loulergue)
⇒ Impossible to evaluate: (e1; bsp_sync); e2

Congruence “(e1;bsp_sync); e2 ≡ e1; (bsp_sync; e2)” (Fortin, Gava)
Use of contexts 〈. . .∆[bsp_sync] . . . 〉

Chosen solution: continuations (à la Blazy/Leroy)

s,nprocs • κ i
⇀ s,p • κ

s, let x = e1 in e2 • κ
i
⇀ s,e1 • (let x = _ in e2) • κ

s, v • (let x = _ in e2) • κ i
⇀ s[x ← v ],e2 • κ
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Small-Step Semantics (without subgroup)

Local execution

Synchronisation
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Big-Step Semantics with Subgroup Synchronisation

Machine execution AllSub option Diamond option
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Big-Step Semantics with Subgroup Synchronisation

One synchronisation (Diamond)

All synchronisations (AllSub)
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Big-Step Semantics with Subgroup Synchronisation

Diamond variation:

∃C ∀i ∈ C si , ei ⇓i s′i ,SYNC(C, e′i )
CommDia{C, (s′0, e

′
0), . . . (s

′
p−1, e

′
p−1)} ⇓Diam (s′′0 , v0), . . . (s′′p−1, vp−1)

(s0, e0), . . . (sp−1, ep−1) ⇓Diam (s′′0 , v0), . . . (s′′p−1, vp−1)

AllSub variation:

{0, . . . ,p− 1} = N ⊕ C1 ⊕ · · · ⊕ Ck ∀i ∈ Cj si , ei ⇓i s′i ,SYNC(Cj , e′i ) ∀i ∈ N si , ei ⇓i s′i , vi

AllCommSub{C1 . . .Ck , v , (s′0, e
′
0), . . . (s

′
p−1, e

′
p−1)} ⇓All (s′′0 , v0), . . . (s′′p−1, vp−1)

(s0, e0), . . . (sp−1, ep−1) ⇓All (s′′0 , v0), . . . (s′′p−1, vp−1)

Diverging rules follow these rules
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Small-Step Semantics with Subgroup Synchronisation

si ,ei • κi
i
⇀ s′i ,e

′
i • κ′i

〈(. . . , (si ,ei • κi ), . . . )〉⇀ 〈. . . , (s′i ,e′i • κ′i ), . . . 〉

∃C ∀i ∈ C Oi ≡ bsp_sync C • κi

〈(s0,O0), . . . , (sp−1,Op−1)〉⇀ CommDia{C, 〈(s0,O0), . . . , (sp−1,Op−1)〉}
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Results

Properties about semantics
All semantics are confluent (Lemmas 1,2,7)
Finite and diverging rules are mutually exclusive (4, 5)
Finite Big-step and small-step semantics are equivalent (6)
Two equivalent semantics for subgroup synchronisation (3)

Benchmarks
Language Rules 1 2 3 4 5 6 7 ALL
Our Why-ML 140 40 ? ? 23 10 90 26 670
BSP-Why-ML 270 130 ? ? 66 22 350 100 1300
With Subgroups 320 ? 416 531 85 35 490 446 1500
CompCert 513 1700 ? ? 1200 100 ? 1800 Big
IMP 30 12 ? ? 14 8 53 11 135

Analysis
1 Work(BSP-With-Subgroup) ≡ 10 ⊗Work(core-seq-language)
2 C language⇒ 10 years of work for team
3 Next talk⇒ 100 years (work for C+BSP+Subgroups)
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Conclusion

BSP-WHY-ML
BSP-WHY-ML is a BSP extension of WHY-ML

BSP-WHY programs are transformed into WHY programs
Subgroups take into account hierarchical architectures

Coq semantics
2 big-steps and small-step semantics
Proofs of equivalence, confluence, exclusive, etc.
That do not scale ! (sizes of the proofs)
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Perspectives (Ongoing/Future Work)

Close to this subject
Application to graph algorithms (Big-Data)
Fully Mechanised BSP-WHY (diverging rules)
Find how to better automate the proofs⇒ less human work
Forget C, switch to a higher-level language such as Java

Long term (team)

Algorithms, semantics and verification tools for multi-ML
Fully verified multi-BSP model checker ?
Application to graph algorithms ?
BSP/Skeleton abstract interpretation
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