Enumerated BSP automata

## Gaétan Hains

Huawei France R&D Center (FRC) gaetan.hains@huawei.com



### GDR-GPL/LAMHA, Paris, Novembre 2015

- BSP automata are finitely-defined systems, but
- $\bullet$  finite alphabet  $\rightarrow$  regular alphabet ...
- two-level nature of BSP computation
- 1. BSP words and automata
- 2. Sequentialization and parallelization
- 3. BSP regular expressions
- 4. Minimization and cost model
- 5. Parallel acceleration
- 6. Intensional BSP automata

| Concurrent systems & theories  | Bulk-synchronous parallelism      |
|--------------------------------|-----------------------------------|
| Arbitrary asynchronism         | Structured asynchronism           |
| High-complexity                | Low-complexity                    |
| Distributed computing          | Parallel computing                |
| Unpredictable performance      | Predictable performance           |
| Endless processes like servers | Finite processes like algorithms  |
| Not scalable                   | Massively scalable                |
| Pairwise synchronizations      | Collective synchronizations       |
| Implicit shared memory         | Explicit distributed memory       |
| Implicit processes             | Explicit processes (pid variable) |

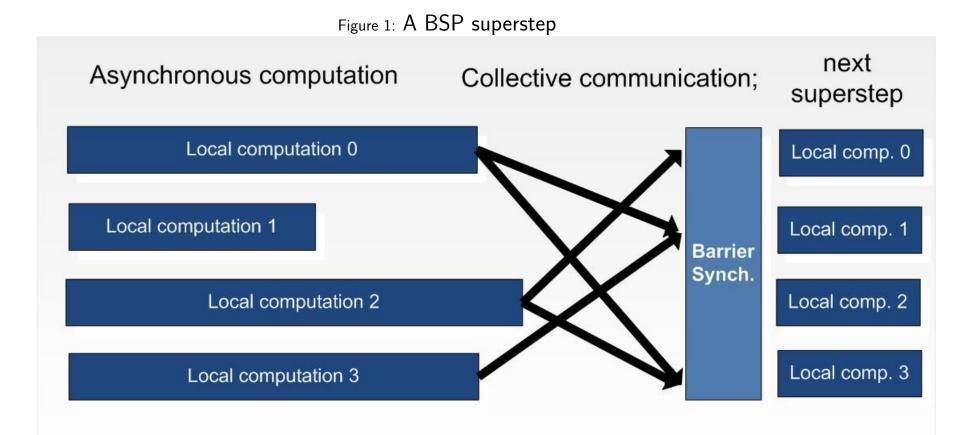
Bulk-synchronous words and languages

**Definition 1.** Elements of  $(\Sigma^*)^p$  are called word-vectors.

A BSP word over  $\Sigma$  is a sequence of word-vectors

i.e. a sequence of  $((\Sigma^*)^p)^*$ .

A BSP language over  $\Sigma$  is a set of BSP words over  $\Sigma$ .



#### Bulk-synchronous automata

**Definition 2.** BSP automaton  $\vec{A} = (\{Q^i\}_{i \in [p]}, \Sigma, \{\delta^i\}_{i \in [p]}, \{q_0^i\}_{i \in [p]}, \{F^i\}_{i \in [p]}, \Delta)$  with  $(Q^i, \Sigma, \delta^i, q_0^i, F^i)$  a DFA, and  $\Delta : \vec{Q} \to \vec{Q}$  is called the synchronization function where  $\vec{Q} = (Q^0 \times ... \times Q^{(p-1)})$  is the set of global states.

- 1. If the sequence of word vectors is empty, stop; otherwise continue.
- 2. If  $< w^0, \ldots, w^{p-1} >$  is the first word vector. Local automaton *i* applies  $w^i$  to its initial state and transition function to reach some state  $q^i$ , **not necessarily an accepting**.
- 3. The synchronization function maps  $\Delta : \langle q^0, \ldots, q^{p-1} \rangle \rightarrow \langle q'^0, \ldots, q'^{p-1} \rangle$ .
- 4. If there are no more word vectors, and  $\forall i. q'^i \in F^i$ , the BSP word is accepted.
- 5. If there are no more word vectors, and  $\exists i. q'^i \notin F^i$ , the BSP word is rejected.
- 6. If there are more word vectors, control returns to step 2. but with local automaton i in state  $q'^i$ , for every location i.

**Proposition 1.** A BSP automaton is equivalent to a deterministic automaton over (the infinite alphabet of) word-vectors.

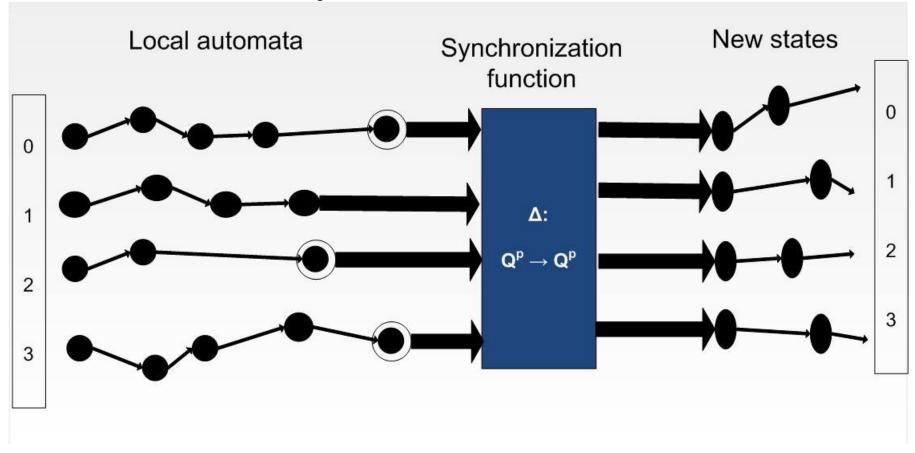


Figure 2: A BSP automaton

Non-determinism and empty transitions

**Definition 3.** A non-deterministic BSP automaton (NBSPA) is a BSP automaton whose local automata are of type

$$Q \times \Sigma \to \mathcal{P}(Q)$$

and whose synchronization function  $\Delta : \vec{Q} \to \mathcal{P}(\vec{Q})$ .

**Definition 4.** A non-deterministic BSP automaton with empty transitions ( $\epsilon$ -NBSPA ) is a NBSPA with local  $\epsilon$ -NFA .

**Proposition 2.** The language of a NBSPA can be accepted by a deterministic BSP automaton.

**Proposition 3.** The language of an  $\epsilon$ -NBSPA can be recognized by a NBSPA.

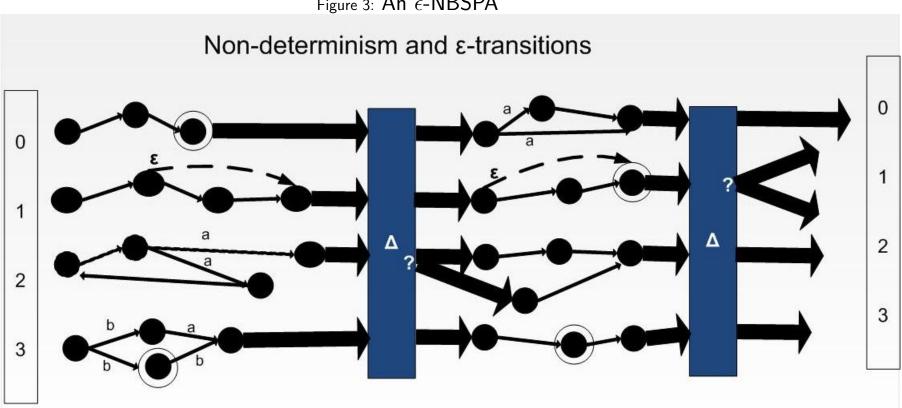


Figure 3: An  $\epsilon$ -NBSPA

Sequentialization

**Definition 5.** Word vectors sequentialization, add locations Seq :  $(\Sigma^*)^p \rightarrow (\Sigma \times [p])^*$ BSP words, add semicolons for barriers:

$$Seq(\epsilon) = \epsilon$$
  

$$Seq(\vec{v}_1 \dots \vec{v}_n) = Seq(\vec{v}_1); \dots; Seq(\vec{v}_n);$$
  
NOTE:  $\vec{\epsilon} = < \epsilon, \dots, \epsilon > \neq \epsilon$ 

Seq  $< \epsilon, \ldots, \epsilon >= (;)$  (one barrier)

**Proposition 4.**  $\forall$  *BSP* automaton A,  $\exists$  *DFA* Seq(A)on  $(\Sigma \times [p]) \cup \{;\}$  such that Seq(L(A)) = L(Seq(A)).

| BSP element: type                                                                  | $\longrightarrow$                 | local / sequential element               |
|------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------|
| $\epsilon:\Sigma^*$                                                                | $\overset{@i}{\longrightarrow}$   | $\epsilon$                               |
| $a:\Sigma^*$                                                                       | $\overset{@i}{\longrightarrow}$   | (a,i)                                    |
| $abaa:\Sigma^*$                                                                    | $\overset{@i}{\longrightarrow}$   | (a,i)(b,i)(a,i)(a,i)                     |
| $\vec{\epsilon} = <\epsilon,\epsilon,\epsilon,\epsilon >: (\Sigma^*)^p$            | $\overset{Seq}{\longrightarrow}$  | $\epsilon$                               |
| $\vec{v_1} = \langle aba, b, bbb, a \rangle : (\Sigma^*)^p$                        | $\overset{Seq}{\longrightarrow}$  | (a,0)(b,0)(a,0)(b,1)(b,2)(b,2)(b,2)(a,3) |
| $\vec{v}_2 = \langle a, \epsilon, bbb, \epsilon \rangle: (\Sigma^*)^p$             |                                   | (a, 0)(b, 2)(b, 2)(b, 2)                 |
| $\vec{\epsilon} = <\epsilon,\epsilon,\epsilon,\epsilon >: (\Sigma^*)^p$            | $\overset{Seq}{\longrightarrow}$  | $\epsilon$                               |
| $\epsilon: ((\Sigma^*)^p)^*$                                                       | $\stackrel{Seq}{\longrightarrow}$ | $\epsilon$                               |
| $\vec{\epsilon} \mathrel{=}<\epsilon,\epsilon,\epsilon,\epsilon>:((\Sigma^*)^p)^*$ | $\overset{Seq}{\longrightarrow}$  | $(\epsilon;) = ;$                        |
| $ec{v}_2 \; ec{\epsilon} : ((\Sigma^*)^p)^*$                                       | $\overset{Seq}{\longrightarrow}$  | (a, 0)(b, 2)(b, 2)(b, 2);;               |
| $ec{\epsilon}ec{v}_2$ : $((\Sigma^*)^p)^*$                                         | $\overset{Seq}{\longrightarrow}$  | ; $(a, 0)(b, 2)(b, 2)(b, 2);$            |
| $<\epsilon,a,\epsilon,a>< b,b,b>:((\Sigma^*)^p)^*$                                 | $\stackrel{Seq}{\longrightarrow}$ | (a, 1)(a, 3); (b, 0)(b, 1)(b, 2)(b, 3);  |

#### Parallelization

**Lemma 1.** Parallelization is the left-inverse of sequentialization on word-vectors  $(\Sigma^*)^p$ :

$$Par(Seq(\vec{v})) = \vec{v}.$$

- To parallelize localized letters  $\operatorname{Par} : (\Sigma \times [p]) \to (\Sigma^*)^p$ .
- To parallelize semicolon-free words  $\operatorname{Par} : (\Sigma \times [p])^* \to (\Sigma^*)^p.$
- To parallelize localized words with semicolons  $Par : ((\Sigma \times [p]) \cup \{;\})^* \to ((\Sigma^*)^p)^*.$

| local / sequential element: type                    | $\longrightarrow$                 | vector/BSP element: type                                          |
|-----------------------------------------------------|-----------------------------------|-------------------------------------------------------------------|
| $(a,1): \Sigma \times [p]$                          | $\underline{Par}$                 | $<\epsilon, a, \epsilon, \epsilon >: (\Sigma^*)^p$                |
| $\epsilon : (\Sigma \times [p])^*$                  | $\xrightarrow{Par}$               | $<\epsilon,\epsilon,\epsilon,\epsilon>:(\Sigma^*)^p$              |
| $(a,1)(b,3)(a,1):(\Sigma\times[p])^*$               | $\xrightarrow{Par}$               | $<\epsilon, aa, \epsilon, b>: (\Sigma^*)^p$                       |
| (a,0)(b,0)(a,0)(b,1)(b,2)(b,2)(b,2)(a,3)            | $\stackrel{Par}{\longrightarrow}$ | $< aba, b, bbb, a >: (\Sigma^*)^p$                                |
| (a, 0)(b, 0)(b, 2)(a, 3); (a, 0)(b, 1)(b, 2)(b, 2); | $\xrightarrow{Par}$               | $< ab, \epsilon, b, a > < a, b, bb, \epsilon >: ((\Sigma^*)^p)^*$ |

**Definition 6.**  $\Sigma_{p;} = (((\Sigma \times [p])^*);)$ 

 $\Sigma_{p;}^{*} = \text{sequential localized words, without non-empty semicolon-free words.}$ 

**Definition 7.** For  $w \in ((\Sigma \times [p])^*) \cup \{;\}$ , w' over-sychronizes  $w (w \leq_{;} w')$  if w' is w with interleaved semicolons. Lift the same definition to languages and automata.

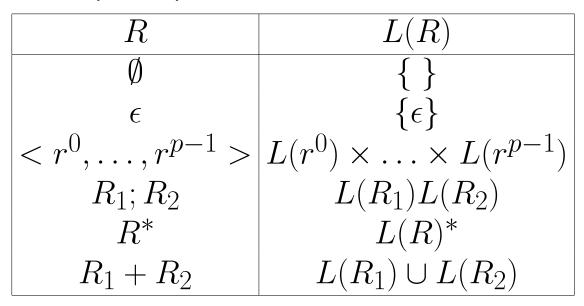
**Theorem 1.**  $\forall$  automaton A on  $(\Sigma \times [p]) \cup \{;\} \exists DFA A' \geq_{;} A$ , such that L(Par(A)) = Par(L(A')).

**Bulk-synchronous regular expressions** 

A BSP regular expression is an expression R from the following grammar:

$$R ::= \emptyset | \epsilon | < r^0, \dots, r^{p-1} > | R; R | R + | R + R$$

where  $r^i$  is any (scalar) regular expression.

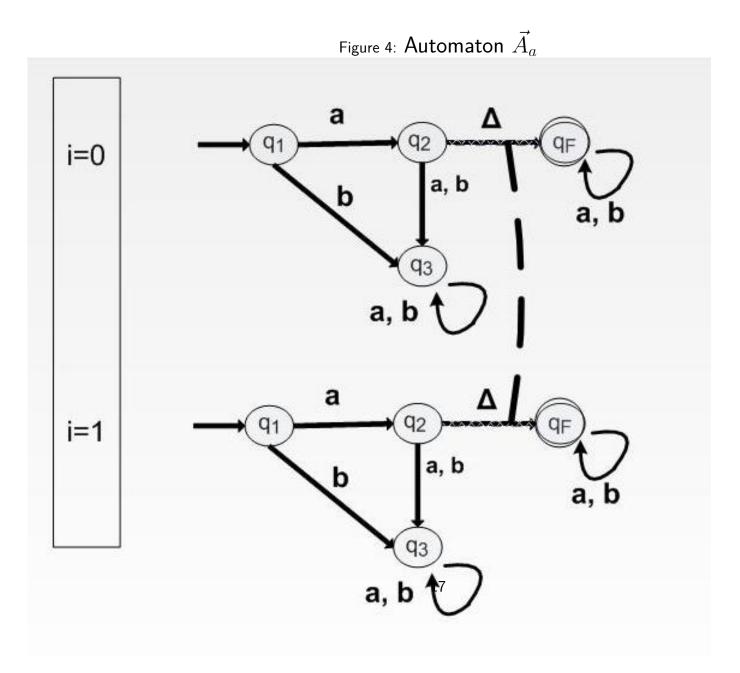


**Theorem 2.** For  $R \in BSPRE \exists a BSP automaton A_R$  such that  $L(A_R) = L(R)$ .

**Theorem 3.** For A a BSP automaton  $\exists R_A \in BSPRE$  such that  $L(R_A) = L(A)$ .

### Minimization

**Proposition 5.** If A is a deterministic BSP automaton on  $\Sigma$  then there exists a sequential automaton Min(Seq(A)) that accepts the same Seq(L(A)) and is of minimal size.



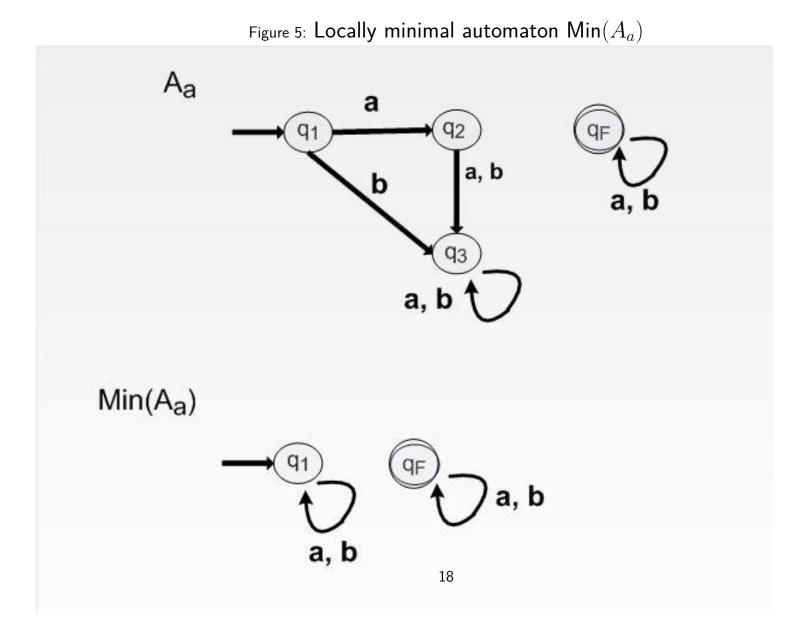
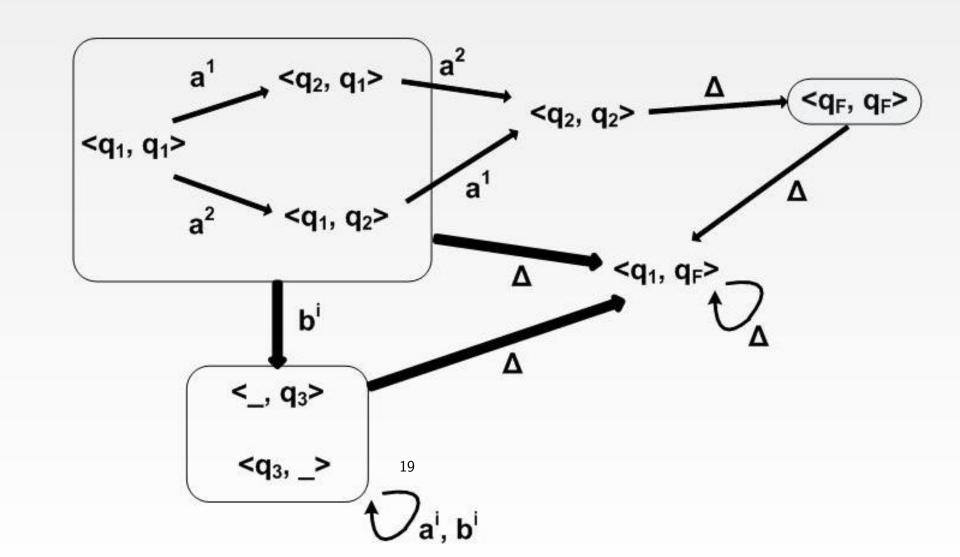


Figure 6: Sequential minimization of BSP automaton  $\vec{A_a}$ 

# $Min(Seq(\overrightarrow{A_a}))$



**Cost-model** 

**Definition 8.** A factorization function on  $\Sigma$  words is a function  $\Phi: \Sigma^* \to (\Sigma^+)^*$  such that  $\Phi(\epsilon) = \epsilon$   $|w| > 0 \Rightarrow |\Phi(w)| > 0$   $\Phi(w) = w_1, w_2 \dots, w_n \Rightarrow w_1 w_2 \dots w_n = w$ **Definition 9.** Given a factorization function  $\Phi$  on  $\Sigma$  words, a

**Definition 9.** Given a factorization function  $\Phi$  on  $\Sigma$  words, a distribution function based on  $\Phi$  is a  $D_{\Phi} : \Sigma^* \to (\Sigma_{p;})^*$  such that

$$D_{\Phi}(\epsilon) = \epsilon$$
  

$$\Phi(w) = w_1, w_2 \dots, w_n \Rightarrow D_{\Phi}(w) = w'_1; w'_2; \dots w'_n;$$
  

$$w_t = a_1 \dots a_k \Rightarrow w'_t = (a_1, i_1) \dots (a_k, i_k)$$
  

$$i_1, \dots, i_k \in [p]$$

**Definition 10.** Let  $\vec{v} \in (\Sigma^*)^p$  be a word vector. Its BSP cost  $cost(\vec{v}) = \max_i |v^i|$  is the length of its longest element. Define also  $l \in \mathbb{N}^+$ , the barrier synchronization cost constant. For a BSP word  $w = \vec{v}_1 \dots \vec{v}_S \in ((\Sigma^*)^p)^*$ , its BSP cost is

$$cost(w) = \Sigma_{t=1}^{S}(cost(\vec{v}_t) + l) = Sl + \Sigma_{t=1}^{S}cost(\vec{v}_t).$$

**Definition 11.** For a given distribution function  $D_{\Phi}$  of factorization  $\Phi$ , the BSP cost of a sequential word  $w \in \Sigma^*$  with respect to  $D_{\Phi}$  is defined as the BSP cost of the parallelization of its distribution:

$$\mathit{cost}_{D_\Phi}(w) = \mathit{cost}(\mathit{Par}(D_\Phi(w)))$$

## Problem 1. BSP-PARALLELIZE-WORDWISE

**Input:** A regular language L given by a regular expression r or DFA A.

**Goal:** Find a distribution  $D_{\Phi}$  and BSP automaton  $A_D$  such that  $L(A) = Par(D_{\Phi}(L))$  and  $|A_D| \in O(|A|)$ . **Subject to:**  $\forall w \in \Sigma^*$ .  $cost_{D_{\Phi}}(w)$  is minimal over  $\{(\Phi, D_{\Phi}, A_D) | L(A) = Par(D_{\Phi}(L))\}$ .

### Problem 2. BSP-PARALLELIZE

**Input:** A regular language L given by a regular expression or DFA.

**Goal:** Find a distribution  $D_{\Phi}$  and BSP automaton  $A_D$  such that  $L(A) = Par(D_{\Phi}(L))$  and  $|A_D| \in O(|A|)$ . **Subject to:**  $T_{D_{\Phi}}(n) = \max\{cost_{D_{\Phi}}(w) \mid |w| = n\}$  is

minimal over  $\{(\Phi, D_{\Phi}, A_D) \mid L(A) = Par(D_{\Phi}(L))\}$ , for all  $n \ge 0$ .

Parallel acceleration

**Definition 12.** Let *L* be a regular language and  $(\Phi, D_{\Phi}, A_D)$  a factorization, distribution and BSP automaton for *L* i.e.  $Par(D_{\Phi}(L))$ . The parallel speedup obtained by  $(\Phi, D_{\Phi}, A_D)$  on a given word size *n* is the ratio

 $speedup(\Phi, D_{\Phi}, A_D, n) = \min\{n/cost_{D_{\Phi}}(w) \mid |w| = n\}$  $L_1 = L(a^*), L_2 = L(a^*b^*), L_3 = L((a + b)^*bbb(a + b)^*)$ Parallel recognition of  $L_1, L_2, L_3 \dots$ 

**Problem 3.** OPEN PROBLEM: does every instance of BSP-PARALLELIZE have a one-superstep solution ? Answer "yes" if the number of states in the BSP automaton solution allowed to grow exponentially. Construction for showing this is very different from that of our above examples.

**Proposition 6.** Every regular language L of regular expression r has a one-superstep parallelization  $(\Phi_1, D_{\div p}, A)$  that can be constructed in time exponential in |r| and such that |A| is also exponential in |r|.

Intensional notations for BSP automata

Write locations numbers  $i \in [p]$  in binary. Encode sets of locations with binary regular expressions. e.g.  $(0+1)^*1 = \text{odd-rank}$  locations, 0(0+1)(0+1) = four first locations when p = 8 etc. Define

 $\vec{r} ::= \left[ \mathsf{pid} \in b \right] r \ \mid \ \vec{r} + \vec{r}$ 

where r is a normal reg.exp.

[pid  $\in$  b] r is the vector of regular expressions s.t. value r at locations  $i \in L(b)$  and  $\epsilon$  elsewhere.  $\vec{r} + \vec{r} =$  pointwise (location by location) sum of regular expressions. Intensional BSP regular expressions:

$$R ::= \emptyset \mid \epsilon \mid \vec{r} \mid R; R \mid R \ast \mid R + R.$$

Assume a BSPRE of the form

$$R = \vec{r} = [\mathsf{pid} \in b] \, r_1$$

and a location i that wishes to communication with a subset of locations.

Process *i* computes b' = complement of b and also

$$r_1^+ = r_1 \cap (a+b)(a+b)^*$$

The required set of locations is

$$([\mathsf{pid} \in b'] (a+b)^+) + [\mathsf{pid} \in b] r_1^+.$$

The automates the conversion of **get** operations into more efficient **put** operations.

Conclusions and future work

BSP automata and BSP langages preserve all the classical closure properties: non-determinism,  $\epsilon$ -transitions and determinization, but break the classical properties of minimization. The interaction between state-minimization and BSP cost optimization remains to be understood.

Future work

- 1. BSP regular grammars and generalization to BSP contextfree languages
- 2. parallel text processing and parsing,
- 3. pattern matching and data structure parallelization (tries etc).