
Enumerated BSP automata
Gaétan Hains

Huawei France R&D Center (FRC)
gaetan.hains@huawei.com

GDR-GPL/LAMHA, Paris, Novembre 2015

1

• BSP automata are finitely-defined systems, but
• finite alphabet → regular alphabet ...
• two-level nature of BSP computation

1. BSP words and automata
2. Sequentialization and parallelization
3. BSP regular expressions
4. Minimization and cost model
5. Parallel acceleration
6. Intensional BSP automata

2

3

Bulk-synchronous words and languages

Definition 1. Elements of (Σ∗)p are called word-vectors.

A BSP word over Σ is a sequence of word-vectors

i.e. a sequence of ((Σ∗)p)∗.

A BSP language over Σ is a set of BSP words over Σ.

4

Figure 1: A BSP superstep

5

Bulk-synchronous automata

Definition 2. BSP automaton ~A = ({Qi}i∈[p],Σ, {δi}i∈[p], {qi0}i∈[p], {F i}i∈[p],∆) with
(Qi,Σ, δi, qi0, F i) a DFA, and ∆ : ~Q → ~Q is called the synchronization function where
~Q = (Q0 × ...×Q(p−1)) is the set of global states.

1. If the sequence of word vectors is empty, stop; otherwise continue.

2. If < w0, . . . , wp−1 > is the first word vector. Local automaton i applies wi to its initial
state and transition function to reach some state qi, not necessarily an accepting.

3. The synchronization function maps ∆ :< q0, . . . , qp−1 >→< q′0, . . . , q′p−1 >.

4. If there are no more word vectors, and ∀i. q′i ∈ F i, the BSP word is accepted.

5. If there are no more word vectors, and ∃i. q′i 6∈ F i, the BSP word is rejected.

6. If there are more word vectors, control returns to step 2. but with local automaton i in
state q′i, for every location i.

Proposition 1. A BSP automaton is equivalent to a deterministic automaton over (the
infinite alphabet of) word-vectors.

6

Figure 2: A BSP automaton

7

Non-determinism and empty transitions

Definition 3.A non-deterministic BSP automaton (NBSPA) is
a BSP automaton whose local automata are of type

Q× Σ→ P(Q)
and whose synchronization function ∆ : ~Q→ P(~Q).
Definition 4. A non-deterministic BSP automaton with empty
transitions (ε-NBSPA) is a NBSPA with local ε-NFA .
Proposition 2. The language of a NBSPA can be accepted by
a deterministic BSP automaton.
Proposition 3.The language of an ε-NBSPA can be recognized
by a NBSPA.

8

Figure 3: An ε-NBSPA

9

Sequentialization

Definition 5.Word vectors sequentialization,
add locations Seq : (Σ∗)p→ (Σ× [p])∗
BSP words, add semicolons for barriers:

Seq(ε) = ε
Seq(~v1 . . . ~vn) = Seq(~v1); . . . ; Seq(~vn);

NOTE: ~ε =< ε, . . . , ε >6= ε

Seq < ε, . . . , ε >= (;) (one barrier)

Proposition 4. ∀ BSP automaton A, ∃ DFA Seq(A)
on (Σ× [p]) ∪ {; } such that Seq(L(A)) = L(Seq(A)).

10

BSP element: type −→ local / sequential element
ε : Σ∗ @i−→ ε

a : Σ∗ @i−→ (a, i)
abaa : Σ∗ @i−→ (a, i)(b, i)(a, i)(a, i)

~ε =< ε, ε, ε, ε >: (Σ∗)p Seq−→ ε

~v1 =< aba, b, bbb, a >: (Σ∗)p Seq−→ (a, 0)(b, 0)(a, 0)(b, 1)(b, 2)(b, 2)(b, 2)(a, 3)

~v2 =< a, ε, bbb, ε >: (Σ∗)p Seq−→ (a, 0)(b, 2)(b, 2)(b, 2)

~ε =< ε, ε, ε, ε >: (Σ∗)p Seq−→ ε

ε : ((Σ∗)p)∗ Seq−→ ε

~ε =< ε, ε, ε, ε >: ((Σ∗)p)∗ Seq−→ (ε;) = ;

~v2 ~ε : ((Σ∗)p)∗ Seq−→ (a, 0)(b, 2)(b, 2)(b, 2); ;

~ε ~v2 : ((Σ∗)p)∗ Seq−→ ; (a, 0)(b, 2)(b, 2)(b, 2);

< ε, a, ε, a >< b, b, b, b >: ((Σ∗)p)∗ Seq−→ (a, 1)(a, 3); (b, 0)(b, 1)(b, 2)(b, 3);

11

Parallelization

Lemma 1. Parallelization is the left-inverse of sequentialization on word-vectors (Σ∗)p:

Par(Seq(~v)) = ~v.

• To parallelize localized letters Par : (Σ× [p])→ (Σ∗)p.

• To parallelize semicolon-free words Par : (Σ× [p])∗ → (Σ∗)p.

• To parallelize localized words with semicolons Par : ((Σ× [p]) ∪ {; })∗ → ((Σ∗)p)∗.

local / sequential element: type −→ vector/BSP element: type

(a, 1) : Σ× [p] Par−→ < ε, a, ε, ε >: (Σ∗)p

ε : (Σ× [p])∗ Par−→ < ε, ε, ε, ε >: (Σ∗)p

(a, 1)(b, 3)(a, 1) : (Σ× [p])∗ Par−→ < ε, aa, ε, b >: (Σ∗)p

(a, 0)(b, 0)(a, 0)(b, 1)(b, 2)(b, 2)(b, 2)(a, 3) Par−→ < aba, b, bbb, a >: (Σ∗)p

(a, 0)(b, 0)(b, 2)(a, 3); (a, 0)(b, 1)(b, 2)(b, 2); Par−→ < ab, ε, b, a >< a, b, bb, ε >: ((Σ∗)p)∗

12

Definition 6. Σp; = (((Σ× [p])∗);)
Σ∗p; = sequential localized words, without non-empty semicolon-

free words.
Definition 7. For w ∈ ((Σ×[p])∗)∪{; }, w′ over-sychronizes
w (w ≤; w′) if w′ is w with interleaved semicolons.
Lift the same definition to languages and automata.
Theorem 1. ∀ automaton A on (Σ×[p])∪{; } ∃ DFA A′ ≥; A,
such that L(Par(A)) = Par(L(A′)).

13

Bulk-synchronous regular expressions

A BSP regular expression is an expression R from the following
grammar:

R ::= ∅ | ε |< r0, . . . , rp−1 >| R;R | R∗ | R + R

where ri is any (scalar) regular expression.
R L(R)
∅ { }
ε {ε}

< r0, . . . , rp−1 > L(r0)× . . .× L(rp−1)
R1;R2 L(R1)L(R2)
R∗ L(R)∗

R1 + R2 L(R1) ∪ L(R2)
14

Theorem 2. For R ∈ BSPRE ∃ a BSP automaton AR such
that L(AR) = L(R).
Theorem 3. For A a BSP automaton ∃ RA ∈ BSPRE such
that L(RA) = L(A).

15

Minimization

Proposition 5. If A is a deterministic BSP automaton on Σ
then there exists a sequential automaton Min(Seq(A)) that ac-
cepts the same Seq(L(A)) and is of minimal size.

16

Figure 4: Automaton ~Aa

17

Figure 5: Locally minimal automaton Min(Aa)

18

Figure 6: Sequential minimization of BSP automaton ~Aa

19

Cost-model

Definition 8. A factorization function on Σ words is a function
Φ : Σ∗→ (Σ+)∗ such that

Φ(ε) = ε
|w| > 0 ⇒ |Φ(w)| > 0
Φ(w) = w1, w2 . . . , wn ⇒ w1w2 . . . wn = w

Definition 9. Given a factorization function Φ on Σ words, a
distribution function based on Φ is a DΦ : Σ∗ → (Σp;)∗ such
that

DΦ(ε) = ε
Φ(w) = w1, w2 . . . , wn ⇒ DΦ(w) = w′1;w′2; . . . w′n;
wt = a1 . . . ak ⇒ w′t = (a1, i1) . . . (ak, ik)
i1, . . . , ik ∈ [p]

20

Definition 10. Let ~v ∈ (Σ∗)p be a word vector. Its BSP cost
cost(~v) = maxi

∣∣∣∣∣vi
∣∣∣∣∣ is the length of its longest element. Define

also l ∈ N+, the barrier synchronization cost constant. For a
BSP word w = ~v1 . . . ~vS ∈ ((Σ∗)p)∗, its BSP cost is

cost(w) = ΣSt=1(cost(~vt) + l) = Sl + ΣSt=1cost(~vt).
Definition 11. For a given distribution function DΦ of factor-
ization Φ, the BSP cost of a sequential word w ∈ Σ∗ with
respect to DΦ is defined as the BSP cost of the parallelization
of its distribution:

costDΦ(w) = cost(Par(DΦ(w)))

21

Problem 1. BSP-PARALLELIZE-WORDWISE
Input: A regular language L given by a regular expression r
or DFA A.
Goal: Find a distribution DΦ and BSP automaton AD such
that L(A) = Par(DΦ(L)) and |AD| ∈ O(|A|).
Subject to: ∀w ∈ Σ∗. costDΦ(w) is minimal over {(Φ, DΦ, AD) |
L(A) = Par(DΦ(L))}.

22

Problem 2. BSP-PARALLELIZE
Input: A regular language L given by a regular expression or
DFA.
Goal: Find a distribution DΦ and BSP automaton AD such
that L(A) = Par(DΦ(L)) and |AD| ∈ O(|A|).
Subject to: TDΦ(n) = max{costDΦ(w) | |w| = n} is
minimal over {(Φ, DΦ, AD) | L(A) = Par(DΦ(L))}, for all
n ≥ 0.

23

Parallel acceleration

Definition 12. Let L be a regular language and (Φ, DΦ, AD) a
factorization, distribution and BSP automaton for L i.e. Par(DΦ(L)).
The parallel speedup obtained by (Φ, DΦ, AD) on a given word
size n is the ratio

speedup(Φ, DΦ, AD, n) = min{n/costDΦ(w) | |w| = n}
L1 = L(a∗), L2 = L(a∗b∗), L3 = L((a + b)∗bbb(a + b)∗)

Parallel recognition of L1, L2, L3 ...
Problem 3. OPEN PROBLEM: does every instance of BSP-
PARALLELIZE have a one-superstep solution ?

24

Answer "yes" if the number of states in the BSP au-
tomaton solution allowed to grow exponentially. Con-
struction for showing this is very different from that of
our above examples.
Proposition 6. Every regular language L of regular expression
r has a one-superstep parallelization (Φ1, D÷p, A) that can be
constructed in time exponential in |r| and such that |A| is also
exponential in |r|.

25

Intensional notations for BSP automata

Write locations numbers i ∈ [p] in binary.
Encode sets of locations with binary regular expressions.
e.g. (0 + 1)∗1 = odd-rank locations,
0(0 + 1)(0 + 1) = four first locations when p = 8 etc.
Define

~r ::= [pid ∈ b] r | ~r + ~r

where r is a normal reg.exp.
[pid ∈ b] r is the vector of regular expressions s.t.

value r at locations i ∈ L(b) and ε elsewhere.
~r + ~r = pointwise (location by location) sum of regular expres-
sions.

26

Intensional BSP regular expressions:
R ::= ∅ | ε | ~r | R;R | R∗ | R + R.

Assume a BSPRE of the form
R = ~r = [pid ∈ b] r1

and a location i that wishes to communication with a subset of
locations.
Process i computes b′ = complement of b and also

r+
1 = r1 ∩ (a + b)(a + b)∗

The required set of locations is
([pid ∈ b′] (a + b)+) + [pid ∈ b] r+

1 .

The automates the conversion of get operations into more
efficient put operations.

27

Conclusions and future work

BSP automata and BSP langages preserve all the classical clo-
sure properties: non-determinism, ε-transitions and determiniza-
tion, but break the classical properties of minimization. The in-
teraction between state-minimization and BSP cost optimization
remains to be understood.
Future work

1. BSP regular grammars and generalization to BSP context-
free languages

2. parallel text processing and parsing,
3. pattern matching and data structure parallelization (tries etc).

28

