Enumerated BSP automata

Gaétan Hains
Huawei France R&D Center (FRC)

gaetan.hains@huawei.com

W

HUAWEI

GDR-GPL/LAMHA, Paris, Novembre 2015

e BSP automata are finitely-defined systems, but
e finite alphabet — regular alphabet ...

e two-level nature of BSP computation

1. BSP words and automata

2. Sequentialization and parallelization
3. BSP regular expressions

4. Minimization and cost model

5. Parallel acceleration

6. Intensional BSP automata

Arbitrary asynchronism Structured asynchronism
High-complexity Low-complexity
Distributed computing Parallel computing
Unpredictable performance Predictable performance
Endless processes like servers Finite processes like algorithms
Not scalable Massively scalable
Pairwise synchronizations Collective synchronizations
Implicit shared memory Explicit distributed memory

Implicit processes Explicit processes (pid variable)

Bulk-synchronous words and languages

Definition 1. Elements of (X*)P are called word-vectors.
A BSP word over X is a sequence of word-vectors
i.e. a sequence of ((X)P)*,

A BSP language over Y. is a set of BSP words over ..

Figure 1: A BSP superstep

next
superstep

Local computation O _ Local comp. O

Asynchronous computation Collective communication;

Local computation 1 Local comp. 1
Barrier
Local comp. 2

Synch.
Local computation 2

Local comp. 3

Local computation 3

Bulk-synchronous automata

Definition 2. BSP automaton fT = ({Qi}ie[p},z,{(si}ie[p],{qé}ie[p],{Fi}ie[p],A) with
(Q', 2,6, g, F') a DFA, and A Q — Q is called the synchronization function where

é p—
1.
2.

A

(Q° x ... x QWD) js the set of global states.

If the sequence of word vectors is empty, stop; otherwise continue.

If <w®, ..., wP~! > is the first word vector. Local automaton i applies w' to its initial
state and transition function to reach some state ¢, not necessarily an accepting.

The synchronization function maps A :< ¢%, ..., ¢" ' >—=< ¢V, ..., ¢" 1 >.
If there are no more word vectors, and Vi. ¢* € F', the BSP word is accepted.
If there are no more word vectors, and Ji. ¢* & F", the BSP word is rejected.

If there are more word vectors, control returns to step 2. but with local automaton ¢ in
state ¢, for every location i.

Proposition 1. A BSP automaton is equivalent to a deterministic automaton over (the
infinite alphabet of) word-vectors.

Figure 2: A BSP automaton

Local automata Synchronization New states
function

Non-determinism and empty transitions

Definition 3. A non-deterministic BSP automaton (NBSPA) is
a BSP automaton whose local automata are of type

Qx X —PQ)
and whose synchronization function A : Q — P(Cj)

Definition 4. A non-deterministic BSP automaton with empty
transitions (e-NBSPA) is a NBSPA with local e-NFA .

Proposition 2. The language of a NBSPA can be accepted by
a deterministic BSP automaton.

Proposition 3. The language of an e-NBSPA can be recognized
by a NBSPA.

Figure 3: An e-NBSPA

Non-determinism and s-transitions

o

£
_ﬁ

S ——

a
> ;

b a

b

Sequentialization

Definition 5. Word vectors sequentialization,
add locations Seq : (X*)P — (X x [p])*
BSP words, add semicolons for barriers:

Seq(e) = ¢
Seq(v] ... Up) = Seq(v);...;Seq(vy);
NOTE: €=<e€,...,e >F¢€

Seq < ¢€,...,e >=(;) (one barrier)

Proposition 4.V BSP automaton A, 9 DFA Seq(A)
on (X x [p]) U{;} such that Seq(L(A)) = L(Seq(A)).

10

BSP element: type

local / sequential element

€ 2"
a: "
abaa : X2*

€=< €66 € > (NP

I 1£ 1 1£ 1 1£ 1 1€ 15 1< 1 - |

™M

Parallelization
Lemma 1. Parallelization is the left-inverse of sequentialization on word-vectors (3*)P:
Par(Seq(v)) = v.
e To parallelize localized letters Par : (X x [p]) — (X%).

e To parallelize semicolon-free words Par : (2 x [p])* — (X*)P.

e To parallelize localized words with semicolons Par : (3 x [p]) U {; })* — ((X*)")*.

local / sequential element: type ——> vector/BSP element: type

(@, 1) Nx[p] PB <eaees (TP
e (2 x [p])* Pag €,€, €€ > (X*)P
(@, 1)(5,3)(a, 1) : (S x [p])* P8 < e aa,e,b>: (D)
(a,0)(b, 0)(a, 0)(b, 1)(b, 2)(b, 2)(b, 2)(a,3) T2 < aba, b, bbb, a >: ()
(a,0)(b,0)(b,2)(a, 3); (a,0)(b, 1)(b, 2)(b, 2); Pag ab,e,b,a >< a,b,bb,e >: ((X*)P)*

12

Definition 6. %, = (((X x [p])");)

Z;. = sequential localized words, without non-empty semicolon-
free words.

Definition 7. Forw € ((Xx[p])*)U{; }, v’ over-sychronizes
w (w <. w') ifw is w with interleaved semicolons.
Lift the same definition to languages and automata.

Theorem 1.V automaton A on (S [p|)U{; } 3DFA A’ >. A,
such that L(Par(A)) = Par(L(A")).

13

Bulk-synchronous regular expressions

A BSP regular expression is an expression R from the following
grammar:

R:=0]e|l<r,...."" ' >|RRR|Rx| R+ R
where 7 is any (scalar) regular expression.
R L(R)

D 17
¢ 1€

<7V P ST LY)y x oo x L(rP
Ry; Ry L(R1)L(Ry)
R* L(R)*

Ri+ Ry L(R1)U L(Ry)

14

Theorem 2. For R € BSPRE 4 a BSP automaton Ap such
that L(Ap) = L(R).

Theorem 3. For A a BSP automaton 4 R, € BSPRE such
that L(R4) = L(A).

15

Minimization

Proposition 5. If A is a deterministic BSP automaton on .
then there exists a sequential automaton Min(Seq(A)) that ac-
cepts the same Seq(L(A)) and is of minimal size.

16

—

Figure 4: Automaton A,

1=0

=1

Figure 5: Locally minimal automaton Min(A4,)

18

Figure 6: Sequential minimization of BSP automaton A,

Min(Seq(Aa))

Cost-model

Definition 8. A factorization function on X. words is a function
d : 3* — (X1)* such that

Ple) =€
lw| >0 = [P(w)] >0
O(w) =wi,wa...,wy = WW... Wy =W

Definition 9. Given a factorization function ® on . words, a
distribution function based on ® is a Dg, : ¥* — (X).)* such
that
Dg(€) = ¢
d(w) =wi,wy...,wy = Dg(w)=wj;wh ... w
wy=aj...ap = wy=(ay,)...(ag,1i)
i1,.-.,15 € |p|

/.
mn»

20

Definition 10. Let v € (X*)P be a word vector. Its BSP cost
cost(U) = max; |vz‘ is the length of its longest element. Define
also | € N, the barrier synchronization cost constant. For a

BSP word w = v ...Ug € ((X*)P)*, its BSP cost is
cost(w) = Zle(cost(ﬁt) +1) =Sl + Zgg:lcost(ﬁt).

Definition 11. For a given distribution function Dg of factor-
ization ®, the BSP cost of a sequential word w € X* with
respect to D¢ is defined as the BSP cost of the parallelization
of its distribution:

costp,(w) = cost(Par(Dg(w)))

21

Problem 1. BSP-PARALLELIZE-WORDWISE
Input: A regular language L given by a regular expression r

or DFA A.
Goal: Find a distribution Dy and BSP automaton Ap such

that L(A) = Par(Dg(L)) and |Ap| € O(|A)).
Subject to: Vw € X, costp, (w) is minimal over {(®, Dg,, Ap) |
L(A) = Par(Dg(L))}.

22

Problem 2. BSP-PARALLELIZE
Input: A regular language L given by a regular expression or

DFA.
Goal: Find a distribution Dg and BSP automaton Ap such

that L(A) = Par(Dg(L)) and |Ap| € O(|A)).

Subject to: Tp, (n) = max{costp,(w) | |w| = n}is
minimal over {(®, D¢, Ap) | L(A) = Par(Dg(L))}, for all
n > 0.

23

Parallel acceleration

Definition 12. Let L be a regular language and (¢, Dy, Ap) a
factorization, distribution and BSP automaton for L i.e. Par(Dg(L)).
The parallel speedup obtained by (¥, Dg, Ap) on a given word
size n is the ratio

speedup(®, D, Ap,n) = min{n/costp, (w) | |w|=n}

L1 = L(a™), Ly = L(a*b*), L3 = L((a+ b)*bbb(a + b)*)
Parallel recognition of L1, Lo, Ly ...

Problem 3. OPEN PROBLEM: does every instance of BSP-
PARALLELIZE have a one-superstep solution ?

24

Answer "yes'' if the number of states in the BSP au-
tomaton solution allowed to grow exponentially. Con-
struction for showing this is very different from that of
our above examples.

Proposition 6. Every regular language L of regular expression
r has a one-superstep parallelization ($1, D-p, A) that can be
constructed in time exponential in |r| and such that |A| is also
exponential in |r|.

25

Intensional notations for BSP automata

Write locations numbers ¢ € [p] in binary.
Encode sets of locations with binary regular expressions.
e.g. (0+ 1)1 = odd-rank locations,
0(0 4+ 1)(0 4 1) = four first locations when p = 8 etc.

Define

ro=lpideblr | Fr+7

where r is a normal reg.exp.

lpid € b] r is the vector of regular expressions s.t.
value r at locations ¢ € L(b) and ¢ elsewhere.
"+ 1~ = pointwise (location by location) sum of regular expres-
sions.

26

Intensional BSP regular expressions:
R:=0|e|7|R;R| Rx| R+ R.
Assume a BSPRE of the form
R =17 =|pid € b|
and a location ¢ that wishes to communication with a subset of

locations.
Process i computes b’ = complement of b and also

ri =710 (a+0b)(a+b)*
The required set of locations is
([pid € b] (a + b)") + [pid € b] r{".
The automates the conversion of get operations into more
efficient put operations.

27

Conclusions and future work

BSP automata and BSP langages preserve all the classical clo-
sure properties: non-determinism, e-transitions and determiniza-
tion, but break the classical properties of minimization. The in-
teraction between state-minimization and BSP cost optimization
remains to be understood.

Future work

1. BSP regular grammars and generalization to BSP context-
free languages

2. parallel text processing and parsing,

3. pattern matching and data structure parallelization (tries etc).

28

