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‣ Context:

- implementation of 2D stencils and convolution for image processing

‣ Observation : cache overflow

- SIMD+OpenMP is not enough to get and sustain a high level of performance
(here cycle per point vs image size)

- after cache overflow (capacity problem), the perf is divided by 3 (at least!)

‣ HLT (High Level Transforms)

- to get better performance before CO

- to sustain performance after CO
(Intel mobile proc, ARM Cortex A9)

‣ Presentation in 3 points

- algorithm presentation

- algorithm optimization with HLT

- benchmark of Intel, IBM and ARM machines
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Harris Point of Interest detector

‣ Harris is representative of low-level image processing

- combination of point and convolution operators = 2D stencils
can scale across a wide range of codes using 2D stencils and convolutions

- arithmetic intensity is low => memory bound algorithm like for many image processing 
algorithms

- neither SIMD nor OpenMP will change that !

- Apply High Level Transforms to get a higher level of performance
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HLT = algorithmic transforms
‣ First set of HLT:

- Operator Fusion (named Halfpipe and Fullpipe)

• to avoir memory access to temporary array (less stress on memory buses)

- Convolution decomposition with column-wise reduction (named Red)

• to both reduce arithmetic complexity and memory access amount

- Can be done in {scalar, SIMD} x {mono-thread, multi-threaded}

‣ Second set of HLT

- Operator pipeline + circular buffer (to store temporary data) with Modular addressing (Mod)

• increases spatial & temporal locality

- but memory layout must be transformed
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operator fusion: transform rules
1. operators are described with producer-consummer model

with input pattern and output pattern

2. pattern adaptation: input of 2nd operator = output of 1st operator
can be combined with pattern transformations: factorization / 
decomposition / combination

3. scalarization: temporary results are stored into registers
(variables instead of array cells)
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Harris & operator fusion
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Macro Meta Programming
• Level #1

‣ one set of macros for each SIMD instruction set

- IBM Altivec (aka VMX), SPX

- Intel SSE, AVX, AVX2, KNC

- ARM Neon

- ST Microelectronics VECx

‣ Arithmetic: vec_add vec_sub, vec_mul, vec_fmadd, vec_fmsub, vec_set
I/O: vec_load1D, vec_store1D, vec_load2D, vec_store2D
permutation: vec_left1, vec_right1

• Level #2

‣ one set of Harris operators: GRADIENTX, GRADIENTY, MUL, GAUSS, 
COARSITY

7
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‣ Three processor famillies: Intel, IBM and ARM 
- Intel (Core and Xeon): Penryn, Nehalem, SandyBridge, IvyBridge, Haswell

+ preliminary result on Xeon-Phi

- IBM: PowerPC 970MP, Power6, Power7, Power7+

- ARM: Cortex-A9 (TI OMAP4), Cortex-A15 (Samsung Exynos 5)

- Prediction: depending on processor's Arithmetic Intensity, cache overflow magnitude will be high 
or low (same for the impact of HLT)

‣ SIMD & fairness: 128-bit only to be fair with ARM
- paper is about HLT impact, not architecture comparison (except SIMD multi-cores vs GPU)

- SIMD = {SSE, Altivec, Neon} without FMA, compiler = {icc, xlc, armgcc}

- All codes are fully parallelized with SIMD & OpenMP

- Xeon-Phi codes use 512-bit MIC instructions
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Three families of processors

proc # cores GHz GFlops BW (GB/s) AI
Cortex A9 1x2 1.2 4.8 1.2 4.0
Cortex A15 1x2 1.7 13.6 5.8 2.3

PowerPC 2x2 2.5 40 5.4 7.4
Power7+ 4x8 3.8 486 265 1.8

Nehalem 2x4 2.67 85.1 22 3.9
IvyBridge 2x12 2.7 518.4 92 5.6
Xeon Phi 1x61 1.33 1298 170 7.6
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- metric: cpp = cycle per pixel vs matrix size [32x32 .. 4096x4096]

- For all: data fit in cache longer, Halpipe1 is always faster than Halfpipe2

- depending on processor's AI, Fullpipe is faster that Halfpipe1

- Halfpipe2 and Halfpipe1 are memory bound => cache overflow still happens :-( 9

Benchmark: Halfpipe & Fullpipe with reduction
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Modular addressing #1
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classic Iliffe matrix
Iliffe matrix +

1 set of circular buffers
mono-threaded version

Iliffe matrix +
2 sets of circular buffers
multi-threaded version

external apron internal apron

‣ Illife matrix [1961]:

- Popularized by Numerical Recipes in C

- offset addressing = arrays of pointers to rows

- can easily manage apron for stencil / convolution

- hypothesis:

- p parallelism: p cores, p threads

- k=3 for (k x k) stencils / convolutions

‣ Circular buffer with modular addressing

- mono-thread: 1 set of 3-row circular buffer for (3x3) stencil:  T[i] points to i mod 3

- multi-thread version: p sets of p set of 3-rows circular buffers:
for "internal apron" T[i] points to different sets of circular buffers

‣ Hack

- the memory layout is transparent to the user ... even for multi-threaded version :-)
(thanks to offset addressing)

- on only has to write a pipelined version of the operators
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Modular addressing #2
‣ Example:

- input and output arrays X, Y should be classical arrays

- Temporary array T is a set(s) of circular buffer(s)

- pipeline of two convolution operators: F1 and F2

- apron processing is not detailed in order to simplify

- Prolog: initiate the filling of T

- call operator F1 (k-1) times: steps #0, #1
to produce 2 rows

- Data-flow processing: for each input,  1output

- after each call of F1, there is enough data to call F2

- repeat until the end (size / p)
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‣ Observations

- Mod results not presented: some problems with memory 
and multi-threading to fix (with  Vtune) ...

- programing  model is easy (shared memory + SIMD)

- HLT transforms are efficient: x5.5

- peak bandwidth is reached
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Xeon Phi: preliminary results
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- Mod codes sustain the performance longer after initial cache overflow.

- On IvyBridge, even for Halfpipe1+Red+Mod, cache overflow still happens ...

- The total speedups are very high: x9.2 & x7.7 for A9 & P7 up to x35.3 for IVB (depends on proc AI)

- Fullpipe rank is a clue to processor peak power (the lower, the higher)
13

Benchmark: Modular addressing
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‣ GPU

- benchmark done on GTX 580 and estimated for Titan and K40 for 2048x2048 images

- Texture versions use free bi-linear interpolation to reduce computations
tile size has been optimized (exhaustive search) for Shared memory

- HLT are also efficient for GPU: x5.5

‣ Observations:

- GPP match GPU performance thanks to HLT

- for Harris, Xeon-Pi behaves like a GPU: minimize communications => Fullpipe is the fastest 
version
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Multi-core SIMD versus GPU

No Half+Red Full+Red Half+Red+ModHalf+Red+Mod gain
Cortex A15 84.1 34.2 60.3 13.7 x6.1

IvyBridge 8.23 1.01 1.26 0.23 x35.3
Power7+ 1.79 0.44 1.5 0.23 x7.7
Xeon Phi 3.12 1.10 0.57 - x5.5

No Half Full Full
memory global Tex Tex Shared
GTX 580 6.52 2.24 1.4 1.16 x5.6

Titan (est.) 2.29 0.79 0.49 0.41 x5.6
K40 (est.) 2.41 0.83 0.52 0.43 x5.6
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Conclusion & future works
‣ Conclusion

- huge impact of High Level Transforms for SIMD multicore GPP, GPU and Xeon-Phi

- can scale across a wide range of codes using 2D stencils and convolutions

- done by hand as compilers can't vectorize Red versions

- GPP match GPU with HLT

‣ Future works

- improve Xeon-Phi performance for Mod versions

- benchmark up-coming machines (Xeon Haswell, Power8, Cortex A57, ...)

- apply HLT to complex algorithms (image stabilization, tracking)

- Harris code as a reference for benchmarking ?
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We are looking for access to new machines (through NDA ?) and collaboration



Thanks !


