
High Level Transforms for SIMD and
low-level computer vision algorithms

L. Lacassagne, D. Etiemble, A. Zaharee,
A. Dominguez, P. Vezolle

extended version of [PPoPP/WMVP 2014]

lionel.lacassagne@lip6.fr
www.lip6.fr

http://www.ief.u-psud.fr/~lacas
http://www.ief.u-psud.fr/~lacas
http://www.ief.u-psud.fr/~lacas
http://www.ief.u-psud.fr/~lacas

/15

‣ Context:

- implementation of 2D stencils and convolution for image processing

‣ Observation : cache overflow

- SIMD+OpenMP is not enough to get and sustain a high level of performance
(here cycle per point vs image size)

- after cache overflow (capacity problem), the perf is divided by 3 (at least!)

‣ HLT (High Level Transforms)

- to get better performance before CO

- to sustain performance after CO
(Intel mobile proc, ARM Cortex A9)

‣ Presentation in 3 points

- algorithm presentation

- algorithm optimization with HLT

- benchmark of Intel, IBM and ARM machines

2

Context & HLT

algorithm presentation

algorithm optimization with HLT

Benchmarks of Intel, IBM and ARM machines

cache
overflow area

400 800 1200 1600 20000

1

2

3

4

5

6

7

8

9

10

11
Nehalem

size

cp
p

before
cache

overflow
:-)

after
cache

overflow
:-(

cache
overflow

area

execution time in cycle per point (cpp)
the lower the better

/15

Harris Point of Interest detector

‣ Harris is representative of low-level image processing

- combination of point and convolution operators = 2D stencils
can scale across a wide range of codes using 2D stencils and convolutions

- arithmetic intensity is low => memory bound algorithm like for many image processing
algorithms

- neither SIMD nor OpenMP will change that !

- Apply High Level Transforms to get a higher level of performance

3

I

GradX

GradY Iy

Ix

Mul

Mul

Mul

Sxx

Sxy

Syy

Coarsity K

Ixx

Ixy

Iyy

Gauss

Gauss

Gauss

Nopipe

operator MUL+ADD LOAD+STORE arithmetic intensity AI
Nopipe 22+35=57 54+9=63 0.90

/15

HLT = algorithmic transforms
‣ First set of HLT:

- Operator Fusion (named Halfpipe and Fullpipe)

• to avoir memory access to temporary array (less stress on memory buses)

- Convolution decomposition with column-wise reduction (named Red)

• to both reduce arithmetic complexity and memory access amount

- Can be done in {scalar, SIMD} x {mono-thread, multi-threaded}

‣ Second set of HLT

- Operator pipeline + circular buffer (to store temporary data) with Modular addressing (Mod)

• increases spatial & temporal locality

- but memory layout must be transformed

4

oYX F1 ZY F2 = ZX F1 F2

= *

/15

operator fusion: transform rules
1. operators are described with producer-consummer model

with input pattern and output pattern

2. pattern adaptation: input of 2nd operator = output of 1st operator
can be combined with pattern transformations: factorization /
decomposition / combination

3. scalarization: temporary results are stored into registers
(variables instead of array cells)

5

GoF =

9F Go =

9F G

(3x3)->(1x1) o (3x3)->(1x1) = (5x5)->(1x1)case #4

F o G =

F G

(1x1)->(1x1) o (1x1)->(1x1) = (1x1)->(1x1)case #1

F o G =

F G

(3x3)->(1x1) o (1x1)->(1x1) = (3x3)->(1x1)case #2

GoF =

9F Go =

9F G

(1x1)->(1x1) o (3x3)->(1x1) = (3x3)->(1x1)case #3

A
(1x1) (1x1)

point to point operator

B

(3x3)
(1x1)

convolution kernel / stencil

/156

Harris & operator fusion

I

GradX

GradY

Mul

Mul

Mul

Coarsity K

Gauss

Gauss

Gauss

Fullpipe

Halfpipe1

I

GradX

GradY Iy

Ix

Mul

Mul

Mul

Coarsity K

Gauss

Gauss

Gauss

operator MUL+ADD LOAD+STORE AI
Nopipe+red 5+27=32 21+9=30 1.10

Halfpipe2+red 5+27=32 12+4=16 2.0
Halfpipe1+red 11+27=73 27+3=30 2.4
Fullpipe+red 29+82=111 5+1=6 18.5

memory bound ?

computation bound ?

Nopipe

I

GradX

GradY Iy

Ix

Mul

Mul

Mul

Sxx

Sxy

Syy

Coarsity K

Ixx

Ixy

Iyy

Gauss

Gauss

Gauss

Halfpipe2

I

GradX

GradY

Mul

Mul

Mul

Coarsity K

Ixx

Ixy

Iyy

Gauss

Gauss

Gauss

/15

Macro Meta Programming
• Level #1

‣ one set of macros for each SIMD instruction set

- IBM Altivec (aka VMX), SPX

- Intel SSE, AVX, AVX2, KNC

- ARM Neon

- ST Microelectronics VECx

‣ Arithmetic: vec_add vec_sub, vec_mul, vec_fmadd, vec_fmsub, vec_set
I/O: vec_load1D, vec_store1D, vec_load2D, vec_store2D
permutation: vec_left1, vec_right1

• Level #2

‣ one set of Harris operators: GRADIENTX, GRADIENTY, MUL, GAUSS,
COARSITY

7

/15

‣ Three processor famillies: Intel, IBM and ARM
- Intel (Core and Xeon): Penryn, Nehalem, SandyBridge, IvyBridge, Haswell

+ preliminary result on Xeon-Phi

- IBM: PowerPC 970MP, Power6, Power7, Power7+

- ARM: Cortex-A9 (TI OMAP4), Cortex-A15 (Samsung Exynos 5)

- Prediction: depending on processor's Arithmetic Intensity, cache overflow magnitude will be high
or low (same for the impact of HLT)

‣ SIMD & fairness: 128-bit only to be fair with ARM
- paper is about HLT impact, not architecture comparison (except SIMD multi-cores vs GPU)

- SIMD = {SSE, Altivec, Neon} without FMA, compiler = {icc, xlc, armgcc}

- All codes are fully parallelized with SIMD & OpenMP

- Xeon-Phi codes use 512-bit MIC instructions

8

Three families of processors

proc # cores GHz GFlops BW (GB/s) AI
Cortex A9 1x2 1.2 4.8 1.2 4.0
Cortex A15 1x2 1.7 13.6 5.8 2.3

PowerPC 2x2 2.5 40 5.4 7.4
Power7+ 4x8 3.8 486 265 1.8

Nehalem 2x4 2.67 85.1 22 3.9
IvyBridge 2x12 2.7 518.4 92 5.6
Xeon Phi 1x61 1.33 1298 170 7.6

/15

- metric: cpp = cycle per pixel vs matrix size [32x32 .. 4096x4096]

- For all: data fit in cache longer, Halpipe1 is always faster than Halfpipe2

- depending on processor's AI, Fullpipe is faster that Halfpipe1

- Halfpipe2 and Halfpipe1 are memory bound => cache overflow still happens :-(9

Benchmark: Halfpipe & Fullpipe with reduction

400 800 1200 1600 20000

10

20

30

40

50

60

70
Penryn

size

cp
p

No

Half2

Half1

Full

1000 2000 3000 40000

1

2

3

4

5

6

7
IvyBridge

size

cp
p

No

Half2

Half1

Full

1000 2000 3000 40000

0.5

1

1.5

2

2.5

3
Power7

size

cp
p

No

Half2

Half1

Full

200 400 600 800 1000
0

10

20

30

40

50

60

70

80 PowerPC

size

cp
p

No

Half2

Half1

Full

200 400 600 800 10000

10

20

30

40

50

60

70

80

90

100
Cortex-A9

size

cp
p

No

Half2

Half1

Full

200 400 600 800 10000

5

10

15

20

25

30

35

40
Cortex-A15

size

cp
p

No

Half2

Half1

Full

/1510

Modular addressing #1

0

1

2

3

4

5

-1

0

1

2

5

6

7

8

9

10

4

0

1

2

0

1

2

3

4

5

-1

0

1

2

6

7

8

9

10

0

1

2

3

4

5

-1

0

1

2

6

7

8

9

10

3

4

5

6

7

8

9

classic Iliffe matrix
Iliffe matrix +

1 set of circular buffers
mono-threaded version

Iliffe matrix +
2 sets of circular buffers
multi-threaded version

external apron internal apron

‣ Illife matrix [1961]:

- Popularized by Numerical Recipes in C

- offset addressing = arrays of pointers to rows

- can easily manage apron for stencil / convolution

- hypothesis:

- p parallelism: p cores, p threads

- k=3 for (k x k) stencils / convolutions

‣ Circular buffer with modular addressing

- mono-thread: 1 set of 3-row circular buffer for (3x3) stencil: T[i] points to i mod 3

- multi-thread version: p sets of p set of 3-rows circular buffers:
for "internal apron" T[i] points to different sets of circular buffers

‣ Hack

- the memory layout is transparent to the user ... even for multi-threaded version :-)
(thanks to offset addressing)

- on only has to write a pipelined version of the operators

/1511

Modular addressing #2
‣ Example:

- input and output arrays X, Y should be classical arrays

- Temporary array T is a set(s) of circular buffer(s)

- pipeline of two convolution operators: F1 and F2

- apron processing is not detailed in order to simplify

- Prolog: initiate the filling of T

- call operator F1 (k-1) times: steps #0, #1
to produce 2 rows

- Data-flow processing: for each input, 1output

- after each call of F1, there is enough data to call F2

- repeat until the end (size / p)

0

1

2

3

4

5

-1

0

1

2

6

7

8

9

10

3

4

5

6

7

8

9

0

1

2

3

4

5

-1

0

1

2

5

6

7

8

9

10

4

0

1

2

0

1

2

3

4

5

-1

0

1

2

6

7

8

9

10

3

4

5

6

7

8

9

0-1

9+1

X : input array T : temporary array Y : output array

0

1

0-1

0F1

0

1

0-1

0

F1
2

1

step #0: prolog

step #1: prolog

0

1

0-1

2

3

0

F1 2

1

0

2

1 F2 1

0

3

0-1

3

4

F1

3

1

3

2

1 F2 2

2

1

2

step #2.a: data-flow

step #2.b: data-flow

step #3.a: data-flow

step #3.b: data-flow

/15

‣ Observations

- Mod results not presented: some problems with memory
and multi-threading to fix (with Vtune) ...

- programing model is easy (shared memory + SIMD)

- HLT transforms are efficient: x5.5

- peak bandwidth is reached

12

Xeon Phi: preliminary results

1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 XeonPhi

size

cp
p

No

Half2

Half1
Full

proc Nopipe Half2+red Half1+Red Full+red speedup
cpp 0.99 0.81 0.35 0.18 x5.5

GFlops 65.8 52.5 144.4 820.2
BW (GB/s) 306 105 182 177

Xeon-Phi: cpp, GFLops and Bandwidth for 2048x2048 images

/15

- Mod codes sustain the performance longer after initial cache overflow.

- On IvyBridge, even for Halfpipe1+Red+Mod, cache overflow still happens ...

- The total speedups are very high: x9.2 & x7.7 for A9 & P7 up to x35.3 for IVB (depends on proc AI)

- Fullpipe rank is a clue to processor peak power (the lower, the higher)
13

Benchmark: Modular addressing

1000 2000 3000 4000 5000 60000

1

2

3

4

5

6
IvyBridge

size

cp
p

No
Half2

Half1

Full

Half2+M
Half1+M

cppcppcpp HLT speedupsHLT speedupsHLT speedups
proc no red mod red mod tot

Cortex A9 86.4 31.2 9.4 x2.8 x3.3 x9.2
Cortex A15 34.1 13.9 5.6 x2.5 x2.5 x6.1

PowerPC 75.7 18.0 10.2 x4.2 x1.8 x7.4
Power7+ 1.62 0.40 0.21 x4.1 x1.9 x7.7

Nehalem 10.5 2.95 0.50 x3.6 x5.9 x21.0
IvyBridge 5.30 0.65 0.15 x8.2 x4.3 x35.3
Xeon Phi 0.99 0.18 - x5.5 - -

200 300 400 500 600 700 800 900 10000

5

10

15

20

25

30

35

40
Cortex-A15

size

cp
p

No

Half2
Half1

Full

Half2+M

Half1+M

1000 2000 3000 40000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

size

cp
p

Power7+

No

Half2

Half1

Full

Half2+M
Half1+M

/15

‣ GPU

- benchmark done on GTX 580 and estimated for Titan and K40 for 2048x2048 images

- Texture versions use free bi-linear interpolation to reduce computations
tile size has been optimized (exhaustive search) for Shared memory

- HLT are also efficient for GPU: x5.5

‣ Observations:

- GPP match GPU performance thanks to HLT

- for Harris, Xeon-Pi behaves like a GPU: minimize communications => Fullpipe is the fastest
version

14

Multi-core SIMD versus GPU

No Half+Red Full+Red Half+Red+ModHalf+Red+Mod gain
Cortex A15 84.1 34.2 60.3 13.7 x6.1

IvyBridge 8.23 1.01 1.26 0.23 x35.3
Power7+ 1.79 0.44 1.5 0.23 x7.7
Xeon Phi 3.12 1.10 0.57 - x5.5

No Half Full Full
memory global Tex Tex Shared
GTX 580 6.52 2.24 1.4 1.16 x5.6

Titan (est.) 2.29 0.79 0.49 0.41 x5.6
K40 (est.) 2.41 0.83 0.52 0.43 x5.6

/15

Conclusion & future works
‣ Conclusion

- huge impact of High Level Transforms for SIMD multicore GPP, GPU and Xeon-Phi

- can scale across a wide range of codes using 2D stencils and convolutions

- done by hand as compilers can't vectorize Red versions

- GPP match GPU with HLT

‣ Future works

- improve Xeon-Phi performance for Mod versions

- benchmark up-coming machines (Xeon Haswell, Power8, Cortex A57, ...)

- apply HLT to complex algorithms (image stabilization, tracking)

- Harris code as a reference for benchmarking ?

15

We are looking for access to new machines (through NDA ?) and collaboration

Thanks !

