O

L

Profiling High Level Heterogeneous Programs

Using the SPOC GPGPU framework for OCaml

Mathias Bourgoin Emmanuel Chailloux Anastasios Doumoulakis

27 mars 2017

UPMC 3

1AA1 SORBONNE UNIVERSITE D'ORLEANS

Heterogeneous computing

Multiple types of processing elements

@ Multicore CPUs
GPUs

FPGAs

Cell

°
°
°
@ Other co-processors

Each with its own programming environment

@ Programming languages (often subsets of C/C++ or assembly language)
@ Compilers
@ Libraries

@ Debuggers and profilers

Profiling High Level Heterogeneous Programs January 24, 2017

Heterogeneous computing

o Complex tools

Incompatible frameworks
Verbose languages/libraries
Low-level frameworks

Explicit management of devices and memory

© 6 6 o o

Dynamic compilation

Hard to design/develop
Hard to debug
Hard to profile

© 6 o6 o

Very hard to achieve high performance

M. Bourgoin E. Chailloux A. Doumoulakis Profiling High Level Heterogeneous Programs January 24, 2017

@ Linear algebra

@ Image processing

@ Machine learning ...

Compiler directives

@ OpenMP 4
@ OpenACC ...

| A\

@ Language extensions
@ Domain Specific Languages

@ Algorithmic skeletons ...

M. Bourgoin E. Chailloux A. Doumoulakis Profiling High Level Heterogeneous Programs

Libraries

@ Linear algebra

@ Image processing New problems

© Machine learning ... o Written by heterogeneous programming

experts

Compiler directives o Dedicated to few (one?) architectures or

frameworks
@ OpenMP 4)
o Limited to specific constructs
@ OpenACC ...
| @ Complex (hidden) scheduling runtime
libraries
_ o Generates most of the heterogeneous
@ Language extensions (co-processor) code
@ Domain Specific Languages ’
@ Algorithmic skeletons ...

M. Bourgoin E. Chailloux A. Doumoulakis Profiling High Level Heterogeneous Programs January

High level programming heterogeneous applications

challenges

From the expert developer point of view
@ How to make it portable ?
@ How to make performance portable ?

@ How will it behave in very heterogeneous systems ?

From the end-user point of view

@ How does it work ?

@ How to debug the code that uses it ?

@ How to optimize the code that uses it ?

Provide experts tool developers and end-users feedback :

@ they can tie to the code they write

@ they can use in very heterogeneous systems

Profiling High Level Heterogeneous Programs January 24, 2017

SPOC : GPGPU Programming with OCaml
Cuda OpenCL

targets

Hardware/
(" o)
@ANVIDIA.| == IEES

AMDZ | & XILINX.
ARM

SPOC : GPGPU Programming with OCaml

SPOC

compiles to

GPGPU

Frameworks

targets

Hardware

M. Bourgoin E. Chailloux A. Doumoulakis Profiling High Level Heterogeneous Programs January 24, 2017

OCaml

@ High-level general-purpose programming language

o Efficient sequential computations

Statically typed

Type inference

Multiparadigm

(imperative, object, functionnal, modular)

Compile to bytecode/native code

Memory manager (very efficient Garbage Collector)
Interactive toplevel (to learn, test and debug)
Interoperability with C

@ Portable

e System : Windows - Unix (OS-X, Linux...)
o Architecture : x86, x86-64, PowerPC, ARM...

Profiling High Level Heterogeneous Programs January 24, 2017

A small example

CPU RAM

GPUO RAM

GPUI RAM

M. Bourgoin E. Chailloux A. Doumoulakis

let dev = Devices.init ()

let n = 1_000_000

let vl = Vector.create Vector.float64 n
let v2 = Vector.create Vector.float64 n
let v3 = Vector.create Vector.float64 n

let k = vec_add (v1l, v2, v3, n)
let block = {blockX = 1024; blockY = 1; blockzZ = 1}
let grid={gridX=(n+1024—1)/1024; gridy=1; gridz=1}

let main () =
random_fill vi;
random_fill v2;
Kernel.run k (block,grid) dev.(0);

for i = 0 to Vector.length v3 — 1 do
Printf.printf "res[%d] = %f; " i v3.[<i>]
done;

Profiling High Level Heterogeneous Programs January 24, 2017

A small example

— v3

CPU RAM let dev = Devices.init ()

let n = 1_000_000

let vl = Vector.create Vector.float64 n
let v2 = Vector.create Vector.float64 n
let v3 = Vector.create Vector.float64 n

let k = vec_add (v1l, v2, v3, n)
GPUO RAM let block = {blockX = 1024; blockY = 1; blockzZ = 1}
let grid={gridX=(n+1024—1)/1024; gridy=1; gridz=1}

let main () =
random_fill vi;
random_fill v2;

N Kernel.run k (block,grid) dev.(0);
GPUI RAM for i = 0 to Vector.length v3 — 1 do
Printf.printf "res[%d] = %f; " i v3.[<i>]
\) done;

M. Bourgoin E. Chailloux A. Doumoulakis Profiling High Level Heterogeneous Programs January 24, 2017

A small example

— v3

CPU RAM let dev = Devices.init ()

let n = 1_000_000

let vl = Vector.create Vector.float64 n
let v2 = Vector.create Vector.float64 n
let v3 = Vector.create Vector.float64 n

let k = vec_add (v1l, v2, v3, n)
GPUO RAM let block = {blockX = 1024; blockY = 1; blockzZ = 1}
let grid={gridX=(n+1024—1)/1024; gridy=1; gridz=1}

let main () =
random_fill vi;
random_fill v2;

N Kernel.run k (block,grid) dev.(0);
GPUI RAM for i = 0 to Vector.length v3 — 1 do
Printf.printf "res[%d] = %f; " i v3.[<i>]
\) done;

M. Bourgoin E. Chailloux A. Doumoulakis Profiling High Level Heterogeneous Programs January 24, 2017

A small example

— v3

CPU RAM let dev = Devices.init ()

let n = 1_000_000

let vl = Vector.create Vector.float64 n
let v2 = Vector.create Vector.float64 n
let v3 = Vector.create Vector.float64 n

let k = vec_add (v1l, v2, v3, n)
GPUO RAM let block = {blockX = 1024; blockY = 1; blockzZ = 1}
let grid={gridX=(n+1024—1)/1024; gridy=1; gridz=1}

let main () =
random_fill vi;
random_fill v2;

N Kernel.run k (block,grid) dev.(0);
GPUI RAM for i = 0 to Vector.length v3 — 1 do
Printf.printf "res[%d] = %f; " i v3.[<i>]
\) done;

M. Bourgoin E. Chailloux A. Doumoulakis Profiling High Level Heterogeneous Programs January 24, 2017

A small example

CPU RAM

vl
v2
v3

GPUO RAM

GPUI RAM

M. Bourgoin E. Chailloux A. Doumoulakis

let dev = Devices.init ()

let n = 1_000_000

let vl = Vector.create Vector.float64 n
let v2 = Vector.create Vector.float64 n
let v3 = Vector.create Vector.float64 n

let k = vec_add (v1l, v2, v3, n)
let block = {blockX = 1024; blockY = 1; blockzZ = 1}
let grid={gridX=(n+1024—1)/1024; gridy=1; gridz=1}

let main () =
random_fill vi;
random_fill v2;
Kernel.run k (block,grid) dev.(0);

for i = 0 to Vector.length v3 — 1 do
Printf.printf "res[%d] = %f; " i v3.[<i>]
done;

Profiling High Level Heterogeneous Programs January 24, 2017

A small example

CPU RAM let dev = Devices.init ()

let n = 1_000_000

let vl = Vector.create Vector.float64 n
let v2 = Vector.create Vector.float64 n
vl let v3 = Vector.create Vector.float64 n
v2

let k = vec_add (v1l, v2, v3, n)
GPUO RAM let block = {blockX = 1024; blockY = 1; blockzZ = 1}
let grid={gridX=(n+1024—1)/1024; gridy=1; gridz=1}

let main () =
random_fill vi;
random_fill v2;

N Kernel.run k (block,grid) dev.(0);
GPUI RAM for i = 0 to Vector.length v3 — 1 do
Printf.printf "res[%d] = %f; " i v3.[<i>]
\) done;

M. Bourgoin E. Chailloux A. Doumoulakis Profiling High Level Heterogeneous Programs January 24, 2017

Sarek : Stream ARchitecture using Extensible Kernels

Vector addition with Sarek

let vec add = kern a b cn —
let open Std in
let open Math.Float64 in
let idx = global_thread_id in
if idx < n then
c.[<idx>] <— add a.[<idx>] b.[<idx>]

y

Vector addition with OpenCL

__kernel void vec_add(__global const double * a,
__global const double * b,
__global double * c, int N)

{
int nIndex = get_global_id(0);
if (nIndex >= N)
return;
c[nIndex] = a[nIndex] + b[nIndex];
}

M. Bourgoin E. Chailloux A. Doumoulakis

Profiling High Level Heterogeneous Programs

rek

Vector addition with Sarek

let vec_ add = kern a b cn —
let open Std in
let open Math.Float64 in
let idx = global thread_id in
if idx < n then
c.[<idx>] <— add a.[<idx>] b.[<idx>]

Sarek features

@ ML-like syntax . .
) @ static type checking
@ ML-like data-types . o
)) @ static compilation to OCaml code
@ simple pattern matching . o
) @ dynamic compilation to Cuda/OpenCL
@ type inference

Profiling High Level Heterogeneous Programs January 24,2017 10/ 21

Sarek static compilation

kern a — let idx =
Std.global_thread_id ()
in a.[<idr>] 0

!
IR

Bind((Id 0), (ModuleAccess((Std),
(global_thread_id)),
(VecSet(VecAcc...))))

OCaml code generation

OCaml Code @ spoc_kernel
funa — > Kern class spoc_class1
let idx = Params method run = ...
Std.global_thread_id () VecVar 0 method compile = ...
in a.[<idz >] < — 0l VecVar 1 end

new spoc_class1

Profiling High Level Heterogeneous Programs January 24,2017 11/2

Sarek dynamic compilation

-\

o

- > .. B
Dok
5 Compile to /”@03, v
Compile \\’\f//’

Kirc.gen my_kernel; | Cuda C source file Tto

Kirc.run my_kernel (b[ock,grid); OpenCL C99
Cuda ptx assembly
device OpenCL
Compi\le\

!
/

let my_kernel = kern ...

kernel [OpenCL C99] [Cuda ptx assembly | and

source
Run -
- -

Return to OCaml code execution

January 24, 2017

Profiling High Level Heterogeneous Programs

Vectors addition

SPOC + Sarek

open Spoc

leﬁ vec add = k?rn abcn— OCaml
et open Std in o
let open Math.Float64 in No explicit transfer
let idx = global_thread_id in Typeinference

if dehx < m dher Static type checkin
c.[<idx>] <— add a.[<idx>] b.[<idx>] =Wke By g

Portable

let dev = Devices.init () Heterogeneous

let n = 1_000_000

let vl = Vector.create Vector.float64 n

let v2 = Vector.create Vector.float64 n

let v3 Vector.create Vector.float64 n

let block = {blockX = 1024; blockY = 1; blockZ = 1}
let grid={gridX=(n+1024—1)/1024; gridy=1; gridz=1}

let main () =
random_fill vi;
random_fill v2;
Kirc.gen vec_add;
Kirc.run vec_add (v1, v2, v3, n) (block,grid) dev.(0);
for i = 0 to Vector.length v3 — 1 do
Printf.printf "res[%d] = %f; " i v3.[<i>]
done;

M. Bourgoin E. Chailloux A. Doumoulakis ling High Level Heterogeneous Programs

Sarek skeletons

Using Sarek

Skeletons are OCaml functions modifying Sarek AST :
Example:

map (kern a —> b)
Scalar computations (‘a — ’b) are transformed
into vector ones ('a vector — 'bvector).

Vector addition

| A

let vl = Vector.create Vector.float64 10_000
and v2 = Vector.create Vector.float64 10_000 in
let v3 = map2 (kern a b — a +. b) vl v2

val map2
(’a — b — ’c) sarek_kernel —
?dev:Spoc.Devices.device —
’a Spoc.Vector.vector —>
’b Spoc.Vector.vector — ’c Spoc.Vector.vector

Profiling High Level Heterogeneous Programs

Profile GPGPU programs using SPOC and Sarek

Host part
@ Where are the vectors ?
@ When are transfers triggered ?

@ How much time are transfers or kernel calls taking?

Kernel part
What control path did my threads take ?
How many computations occurred ?

Was memory used efficiently ?

How much time was spent in different parts of the kernels?

©

Keep it portable

©

Compatible with very heterogeneous systems

Profiling High Level Heterogeneous Programs January 24,2017

Profiling Overview

Without profiling With profiling

Compile-time

OCaml + Sarek
e Source Code

Preprocessing Sarek
kernels + compilation
of OCaml code

Compilation unit

~_
/—\ implementation |-\

Linking with SPOC
runtime library
modified for profiling

Linking with SPOC
runtime library

_/7[Executable]u

Profiling High Level Heterogeneous Programs January 24,2017 16/ 21

Profiling Overview

Without profiling With profiling

Run-time

let add = kern vl v2 v3 n —
let i = thread_id_x +

Detects devices com- thread_dim_x * block_id_x in Prepares profiling data
patible with SPOC if i>mn then structures
return ();
else Fills profiling file with

v3.[<i>] <= v1.[<i>] + v2.[<i>]

host profiling info

let main () =

let devs = Devices.init () in Generates and run
Generates and run na- let vl = Vector.create float32 n . K li
ti ki | and v2 = Vector.create float32 n native kernel instru-
Ive Kerne and v3 = Vector.create float32 n mented for proﬁling

in

K 1. H

ernel.run add Injects Sarek source

(vl, v2, v3, n) devs.(0);
commented with ker-

nel profiling info into
profiling file

High Level Heterogeneous Programs

Host part profiling

Instrumented SPOC library

@ Trace every SPOC runtime operations

o Add events to Cuda/OpenCL streams/command queues to get precise measures
and stay compatible with SPOC async calls

@ Collect the following info :

List of all co-processors + associated info (name, clock frequency ...)
Allocation/Deallocation of vectors in CPU/Co-processor memory
Memory transfers (direction, from/to which device, size, duration...)
Kernels (compilation/loading/execution time)

Profiling High Level Heterogeneous Programs January 24,2017

Host part profiling : Example

Informat collected

@ Kind of event (transfer,
compilation, execution,...)

State of event (start, end)
Time
Co-processor targeted

Vector transfered

Size (in bytes)

{

“type”:”execution”,

”desc” ”OPENCL_KERNEL_EXEC”,
”state” “start”,
“time” 160304,
”id” : 40,
deviceld” : 717,
o

{
“type”:”execution”,
”state” ”end”,
time” 160374,
?id” : 40,
”duration”: 15

ba

Profiling High Level Heterogeneous Programs

Host part profiling : Visualizer

Computing Overview Global Stats
Cuda Timeline
vector 1
&
resides -
OpenCL Timeline 1024
& | T size giez
kind floalf4
Transfers | |
inSub falsa
Compile+Execution vector 2
B R
Vactor Oparation resies
Voot 1 length 1024
size 12
Wect 2
Kind floathd
Vest 3 | isSub false

High Level Heterogeneous Programs

Kernel part profiling

Transform sarek kernel to get profiling information

@ Control flow counter
@ Memory counters
@ Compute operations (FLOPS)

4

@ Add counter vector to co-processor global memory

@ Use atomics operations (mostly atomic_add) offered in both Cuda and OpenCL
@ Get updated counters to the CPU after kernel execution

@ Compilation Sarek to Sarek with comments using the computed counters

M. Bourgoin E. Chailloux A. Doumoulakis Profiling High Level Heterogeneous Programs

January 24,2017 18/ 21

A simple example : Sarek kernel

rek kernel used computat

let compute = kern trainingSet data res setSize dataSize —
let open Std in
let computeId = thread_idx_x + block_dim x * block_idx_x in
if computeld < setSize then (
let mutable diff = 0 in
let mutable toAdd = 0 in
let mutable 1 = 0 in
while (1 < dataSize) do
toAdd := data.[<i>] — trainingSet.[<computeId*dataSize + i>];
diff := diff + (toAdd * toAdd);
i= i+ 1;
done;
res.[<computeId>] <— diff)
else
return ()

M. Bourgoin E. Chailloux A. Doumoulakis Profiling High Level Heterogeneous Programs

A simple example : Generated OpenCL profiling kernel

__kernel void spoc_dummy (

*

__global unsigned long profile_counters,
__global int* trainingSet, __global int* data,
__global int* res, int setSize, int dataSize) {

int computeld;

int diff;

int toAdd;

int i;

computeId = ((get_local_id (0)) +
((get_local_size (0)) * (get_group_id (0)))) ;

if (computeld < setSize){

spoc_atomic_add(profile_counters+3, 1); // control if

spoc_atomic_add(profile counters+0,1); // global mem store

diff = 0 ;

toAdd = 0 ;

i=0;

while (i < dataSize){
spoc_atomic_add(profile_counters+1,2); // global mem load
spoc_atomic_add(profile_counters+2, 1); // control while

toAdd = (data[i] — trainingSet[((computeIld * dataSize) + i)]) ;
diff = (diff + (toAdd * toAdd)) ;
i=(1+ 1)}
res[computeId] = diff;;
}
else {
spoc_atomic_add(profile_counters+4, 1); // control else
return ;

Profiling High Level Heterogeneous Programs

A simple example : Profiling output

(* Profile Kernel *)

kern trainingSet data res setSize dataSize —
(** ### global_memory stores : 5000 *7)

(" ### global_memory loads : 7840000 *~)

let mutable computeId = (thread idx x + (block _dim x * block_idx x)) in
if (computeId < setSize) then
(** ### visits : 5000 *%)
let mutable diff = 0 in
let mutable toAdd = 0 in
let mutable 1 = 0 in
while 1 < dataSize do
Y g## visits : 3920000 * %)
toAdd := (data.[<i>] — trainingSet.[<((computeld * dataSize) + i) >])
diff := (diff + (toAdd * toAdd));

i:= (1 + 1);
done;
res.[<computeld>] <— diff;
else
(** ### visits : 120 *7%)
return ()

Profiling High Level Heterogeneous Programs

Conclusion

Profiling with High-level generative frameworks

@ Traces implicit asynchronous events (transfers, kernel launches, ...)

@ Provides metrics from the execution of the kernels

That can be tied back to the written code!

v

Portable and heterogeneous

@ Compatible with Cuda/OpenCL frameworks/devices

@ Can be used in very heterogeneous systems

@ Same level of information for every device

M. Bourgoin E. Chailloux A. Doumoulakis Profiling High Level Heterogeneous Programs January 24,2017 20/ 21

Conclusion

Profiling with High-level generative frameworks

@ Traces implicit asynchronous events (transfers, kernel launches, ...)

@ Provides metrics from the execution of the kernels

That can be tied back to the written code!

v

Portable and heterogeneous

@ Compatible with Cuda/OpenCL frameworks/devices
@ Can be used in very heterogeneous systems

@ Same level of information for every device

v

Future work
@ Provide more counters
@ User defined counters
@ Improve Graphical Visualizer (include kernel traces)

@ Analyze counters to provide advices to the user

M. Bourgoin E. Chailloux A. Doumoulakis Profiling High Level Heterogeneous Programs January 24, 2017 20/21

Thanks
|I||
.|I|||||||||

SPOC:http://www.algo-prog.info/spoc/
Spoc is compatible with x86_64 Unix (Linux, Mac OS X), Windows

for more information:
mathias.bourgoin@univ-orleans.fr

UPMC pip

18RI SORBONNE

M. Bourgoin E. Chailloux A. Doumoulakis Profiling High Level Heterogeneous Programs January 24, 2017 21/21

http://www.algo-prog.info/spoc/
mailto:mathias.bourgoin@univ-orleans.fr

