
BSP Programming BSP Equivalences Conclusion

Imperative Characterization of BSP Algorithms

Yoann Marquer & Frédéric Gava

Laboratory of Algorithms, Complexity and Logic (LACL)
University of Paris-East

Imperative Characterization of BSP Algorithms 1 / 28



BSP Programming BSP Equivalences Conclusion

Outline

1 BSP Programming

2 Algorithmic Equivalences

3 Conclusion

Imperative Characterization of BSP Algorithms 2 / 28



BSP Programming BSP Equivalences Conclusion

Outline

1 BSP Programming

2 Algorithmic Equivalences

3 Conclusion

Imperative Characterization of BSP Algorithms 3 / 28



BSP Programming BSP Equivalences Conclusion

Introduction

What is an algorithm?
Not a Turing machine
Not a programming language
Every designer writes them in different forms

So?
Axiomatic definition of a sequential algorithm and ASM
Equivalence with a core programming language

And then?
Parallel and/or distributed ASM (Gurevich and al)
Without equivalences with a core programming language
Because no cost model and not a bridging model

Imperative Characterization of BSP Algorithms 4 / 28



BSP Programming BSP Equivalences Conclusion

Introduction

What is an algorithm?
Not a Turing machine
Not a programming language
Every designer writes them in different forms

So?
Axiomatic definition of a sequential algorithm and ASM
Equivalence with a core programming language

And then?
Parallel and/or distributed ASM (Gurevich and al)
Without equivalences with a core programming language
Because no cost model and not a bridging model

Imperative Characterization of BSP Algorithms 4 / 28



BSP Programming BSP Equivalences Conclusion

Introduction

What is an algorithm?
Not a Turing machine
Not a programming language
Every designer writes them in different forms

So?
Axiomatic definition of a sequential algorithm and ASM
Equivalence with a core programming language

And then?
Parallel and/or distributed ASM (Gurevich and al)
Without equivalences with a core programming language
Because no cost model and not a bridging model

Imperative Characterization of BSP Algorithms 4 / 28



BSP Programming BSP Equivalences Conclusion

What is a bridging model? For sequential computing

Von Neumann

SoftwareHardware

Quick Sort algorithm

Numerical simulation

ML

C language

Intel X86

AMD Athlon 64

Motorola 68000

PowerPC

Imperative Characterization of BSP Algorithms 5 / 28



BSP Programming BSP Equivalences Conclusion

What is a bridging model? For HPC computing

BSP

SoftwareHardware

Parallel Sorting
by Regular Sampling

Heat equation

BSPLIB

BSML

Intel Core i9

IBM Sequoia

SGI Origin 2000

Imperative Characterization of BSP Algorithms 6 / 28



BSP Programming BSP Equivalences Conclusion

Bridging model: Bulk Synchronous Parallelism (BSP)

The BSP computer
Defined by:

p pairs CPU/memory
Communication network (g)
Synchronisation unit (L)
Super-steps execution

Properties:
“Confluent”
“Deadlock-free”
Predictable performances

local
computations

p0 p1 p2 p3

communication (⊗g)

barrier (⊕L)

next super-step
...

...
...

...

Pro and cons

Pro Cons
Cost model Not all parallel patterns
Structured parallelism Too regular
Easy to learn No asynchronous warnings

Imperative Characterization of BSP Algorithms 7 / 28



BSP Programming BSP Equivalences Conclusion

Bridging model: Bulk Synchronous Parallelism (BSP)

The BSP computer
Defined by:

p pairs CPU/memory
Communication network (g)
Synchronisation unit (L)
Super-steps execution

Properties:
“Confluent”
“Deadlock-free”
Predictable performances

local
computations

p0 p1 p2 p3

communication (⊗g)

barrier (⊕L)

next super-step
...

...
...

...

Pro and cons

Pro Cons
Cost model Not all parallel patterns
Structured parallelism Too regular
Easy to learn No asynchronous warnings

Imperative Characterization of BSP Algorithms 7 / 28



BSP Programming BSP Equivalences Conclusion

Bridging model: Bulk Synchronous Parallelism (BSP)

The BSP computer
Defined by:

p pairs CPU/memory
Communication network (g)
Synchronisation unit (L)
Super-steps execution

Properties:
“Confluent”
“Deadlock-free”
Predictable performances

local
computations

p0 p1 p2 p3

communication (⊗g)

barrier (⊕L)

next super-step
...

...
...

...

Pro and cons

Pro Cons
Cost model Not all parallel patterns
Structured parallelism Too regular
Easy to learn No asynchronous warnings

Imperative Characterization of BSP Algorithms 7 / 28



BSP Programming BSP Equivalences Conclusion

Bridging model: Bulk Synchronous Parallelism (BSP)

The BSP computer
Defined by:

p pairs CPU/memory
Communication network (g)
Synchronisation unit (L)
Super-steps execution

Properties:
“Confluent”
“Deadlock-free”
Predictable performances

local
computations

p0 p1 p2 p3

communication (⊗g)

barrier (⊕L)

next super-step
...

...
...

...

Pro and cons

Pro Cons
Cost model Not all parallel patterns
Structured parallelism Too regular
Easy to learn No asynchronous warnings

Imperative Characterization of BSP Algorithms 7 / 28



BSP Programming BSP Equivalences Conclusion

Bridging model: Bulk Synchronous Parallelism (BSP)

The BSP computer
Defined by:

p pairs CPU/memory
Communication network (g)
Synchronisation unit (L)
Super-steps execution

Properties:
“Confluent”
“Deadlock-free”
Predictable performances

local
computations

p0 p1 p2 p3

communication (⊗g)

barrier (⊕L)

next super-step
...

...
...

...

Pro and cons

Pro Cons
Cost model Not all parallel patterns
Structured parallelism Too regular
Easy to learn No asynchronous warnings

Imperative Characterization of BSP Algorithms 7 / 28



BSP Programming BSP Equivalences Conclusion

Bridging model: Bulk Synchronous Parallelism (BSP)

The BSP computer
Defined by:

p pairs CPU/memory
Communication network (g)
Synchronisation unit (L)
Super-steps execution

Properties:
“Confluent”
“Deadlock-free”
Predictable performances

local
computations

p0 p1 p2 p3

communication (⊗g)

barrier (⊕L)

next super-step
...

...
...

...

Pro and cons

Pro Cons
Cost model Not all parallel patterns
Structured parallelism Too regular
Easy to learn No asynchronous warnings

Imperative Characterization of BSP Algorithms 7 / 28



BSP Programming BSP Equivalences Conclusion

Bridging model: Bulk Synchronous Parallelism (BSP)

The BSP computer
Defined by:

p pairs CPU/memory
Communication network (g)
Synchronisation unit (L)
Super-steps execution

Properties:
“Confluent”
“Deadlock-free”
Predictable performances

local
computations

p0 p1 p2 p3

communication (⊗g)

barrier (⊕L)

next super-step
...

...
...

...

Pro and cons

Pro Cons
Cost model Not all parallel patterns
Structured parallelism Too regular
Easy to learn No asynchronous warnings

Imperative Characterization of BSP Algorithms 7 / 28



BSP Programming BSP Equivalences Conclusion

Bridging model: Bulk Synchronous Parallelism (BSP)

The BSP computer
Defined by:

p pairs CPU/memory
Communication network (g)
Synchronisation unit (L)
Super-steps execution

Properties:
“Confluent”
“Deadlock-free”
Predictable performances

local
computations

p0 p1 p2 p3

communication (⊗g)

barrier (⊕L)

next super-step
...

...
...

...

Pro and cons

Pro Cons
Cost model Not all parallel patterns
Structured parallelism Too regular
Easy to learn No asynchronous warnings

Imperative Characterization of BSP Algorithms 7 / 28



BSP Programming BSP Equivalences Conclusion

Examples: broadcasting a value

Direct broadcast (one super-step)
10 2

Cost ≡ p×g×n + L

Broadcast with two super-steps

Cost ≡ 2×g×n + 2×L

Imperative Characterization of BSP Algorithms 8 / 28



BSP Programming BSP Equivalences Conclusion

Examples: broadcasting a value

Direct broadcast (one super-step)
10 2

Cost ≡ p×g×n + L

Broadcast with two super-steps

Cost ≡ 2×g×n + 2×L

Imperative Characterization of BSP Algorithms 8 / 28



BSP Programming BSP Equivalences Conclusion

Parallel Sorting by Regular Sampling (PSRS)

Imperative Characterization of BSP Algorithms 9 / 28



BSP Programming BSP Equivalences Conclusion

BSP imperative programming
Languages and libraries

1 Dedicated languages: NestStep, BSP++, BSP-Python, . . .
2 BSPLib for C and Java
3 BSPGPU, Ct, Hamma, JBSP, JPUB, . . .
4 MPI collective operations

Communications: BSMP Communications: DRMA

Imperative Characterization of BSP Algorithms 10 / 28



BSP Programming BSP Equivalences Conclusion

BSP imperative programming
Languages and libraries

1 Dedicated languages: NestStep, BSP++, BSP-Python, . . .
2 BSPLib for C and Java
3 BSPGPU, Ct, Hamma, JBSP, JPUB, . . .
4 MPI collective operations

Communications: BSMP Communications: DRMA

Imperative Characterization of BSP Algorithms 10 / 28



BSP Programming BSP Equivalences Conclusion

BSP imperative programming
Languages and libraries

1 Dedicated languages: NestStep, BSP++, BSP-Python, . . .
2 BSPLib for C and Java
3 BSPGPU, Ct, Hamma, JBSP, JPUB, . . .
4 MPI collective operations

Communications: BSMP Communications: DRMA

Imperative Characterization of BSP Algorithms 10 / 28



BSP Programming BSP Equivalences Conclusion

BSP imperative programming
Languages and libraries

1 Dedicated languages: NestStep, BSP++, BSP-Python, . . .
2 BSPLib for C and Java
3 BSPGPU, Ct, Hamma, JBSP, JPUB, . . .
4 MPI collective operations

Communications: BSMP

Communications: DRMA

Imperative Characterization of BSP Algorithms 10 / 28



BSP Programming BSP Equivalences Conclusion

BSP imperative programming
Languages and libraries

1 Dedicated languages: NestStep, BSP++, BSP-Python, . . .
2 BSPLib for C and Java
3 BSPGPU, Ct, Hamma, JBSP, JPUB, . . .
4 MPI collective operations

Communications: BSMP Communications: DRMA

Imperative Characterization of BSP Algorithms 10 / 28



BSP Programming BSP Equivalences Conclusion

Examples of C primitives

BSMP and DRMA
Typical BSMP routines:
• bsp_send(dest,buffer,size)
• bsp_nmsgs()
• msg* bsp_findmsg(proc_id,index)

Typical DRMA routines:
• bsp_push_reg(ident,size)
• bsp_get(srcPID,src,offset,dest,nbytes)

bsp_sync() (barrier)

MPI collective operations
MPI_Scatter(sendbuf,sendcount,sendtype,recvbuf,recvcount,recvtype,root,comm)

MPI_Gather(sendbuf,sendcount,sendtype,recvbuf,recvcount,recvtype,root,comm)

Imperative Characterization of BSP Algorithms 11 / 28



BSP Programming BSP Equivalences Conclusion

Examples of C primitives

BSMP and DRMA
Typical BSMP routines:
• bsp_send(dest,buffer,size)
• bsp_nmsgs()
• msg* bsp_findmsg(proc_id,index)

Typical DRMA routines:
• bsp_push_reg(ident,size)
• bsp_get(srcPID,src,offset,dest,nbytes)

bsp_sync() (barrier)

MPI collective operations
MPI_Scatter(sendbuf,sendcount,sendtype,recvbuf,recvcount,recvtype,root,comm)

MPI_Gather(sendbuf,sendcount,sendtype,recvbuf,recvcount,recvtype,root,comm)

Imperative Characterization of BSP Algorithms 11 / 28



BSP Programming BSP Equivalences Conclusion

Examples of C primitives

BSMP and DRMA
Typical BSMP routines:
• bsp_send(dest,buffer,size)
• bsp_nmsgs()
• msg* bsp_findmsg(proc_id,index)

Typical DRMA routines:
• bsp_push_reg(ident,size)
• bsp_get(srcPID,src,offset,dest,nbytes)

bsp_sync() (barrier)

MPI collective operations
MPI_Scatter(sendbuf,sendcount,sendtype,recvbuf,recvcount,recvtype,root,comm)

MPI_Gather(sendbuf,sendcount,sendtype,recvbuf,recvcount,recvtype,root,comm)

Imperative Characterization of BSP Algorithms 11 / 28



BSP Programming BSP Equivalences Conclusion

Examples of C primitives

BSMP and DRMA
Typical BSMP routines:
• bsp_send(dest,buffer,size)
• bsp_nmsgs()
• msg* bsp_findmsg(proc_id,index)

Typical DRMA routines:
• bsp_push_reg(ident,size)
• bsp_get(srcPID,src,offset,dest,nbytes)

bsp_sync() (barrier)

MPI collective operations
MPI_Scatter(sendbuf,sendcount,sendtype,recvbuf,recvcount,recvtype,root,comm)

MPI_Gather(sendbuf,sendcount,sendtype,recvbuf,recvcount,recvtype,root,comm)

Imperative Characterization of BSP Algorithms 11 / 28



BSP Programming BSP Equivalences Conclusion

One example: PSRS sorting

PSRS_Sorting(array<T> tab)
begin

seq_sort(tab); (∗ local sorting ∗)
s1←sample(tab); (∗ first sampling ∗)
for i←0 to nprocs−1 do

bsp_send(i,s1[i],size(s1[i]));
done;
bsp_sync();
s_all←[]; (∗ second sampling ∗)
for i←0 to nprocs−1 do

merge(s_all,bsp_findmsg(i,0));
done;
s2←sample(s_all);
...
bsp_sync();
...

end

Problems
1 It is rather a code than an algorithm ...
2 Thus, what is an BSP algorithm?
3 Is my programming language rich enough to programming all the

BSP algorithms?

Imperative Characterization of BSP Algorithms 12 / 28



BSP Programming BSP Equivalences Conclusion

One example: PSRS sorting

PSRS_Sorting(array<T> tab)
begin

seq_sort(tab); (∗ local sorting ∗)
s1←sample(tab); (∗ first sampling ∗)
for i←0 to nprocs−1 do

bsp_send(i,s1[i],size(s1[i]));
done;
bsp_sync();
s_all←[]; (∗ second sampling ∗)
for i←0 to nprocs−1 do

merge(s_all,bsp_findmsg(i,0));
done;
s2←sample(s_all);
...
bsp_sync();
...

end

Problems
1 It is rather a code than an algorithm ...
2 Thus, what is an BSP algorithm?
3 Is my programming language rich enough to programming all the

BSP algorithms?

Imperative Characterization of BSP Algorithms 12 / 28



BSP Programming BSP Equivalences Conclusion

Outline

1 BSP Programming

2 Algorithmic Equivalences

3 Conclusion

Imperative Characterization of BSP Algorithms 13 / 28



BSP Programming BSP Equivalences Conclusion

Execution using the axiomatic definition

Sequential algorithm: BSP algorithm:

Imperative Characterization of BSP Algorithms 14 / 28



BSP Programming BSP Equivalences Conclusion

Axiomatic definition (1)
Sequential:

Axiom 1; Sequential Time
1 a set of states S(Aseq)

2 a set of initial states
I(Aseq) ⊆ S(Aseq)

3 a transition function
τAseq : S(Aseq)→ S(Aseq)

Axiom 2; Abstract States

1 states are first-order
structures and closed by
isomorphism

2 τAseq commutes with the
isomorphism

BSP:

Axiom 1; Sequential Time
1 a set of states S(ABSP)

2 a set of initial states
I(ABSP) ⊆ S(ABSP)

3 a transition function
τABSP : S(ABSP)→ S(ABSP)

Axiom 2; Abstract States

1 states are p-tuples and closed
by p-isomorphism

2 τABSP commutes with the
p-isomorphism and preserves
the size of the p-tuples.

Imperative Characterization of BSP Algorithms 15 / 28



BSP Programming BSP Equivalences Conclusion

Axiomatic definition (1)
Sequential:

Axiom 1; Sequential Time
1 a set of states S(Aseq)

2 a set of initial states
I(Aseq) ⊆ S(Aseq)

3 a transition function
τAseq : S(Aseq)→ S(Aseq)

Y1

Y2

X1 Z1

X3

W4

X2

Y3

I(A_seq)

S(A_seq)

U1

U2

Axiom 2; Abstract States

1 states are first-order
structures and closed by
isomorphism

2 τAseq commutes with the
isomorphism

BSP:

Axiom 1; Sequential Time
1 a set of states S(ABSP)

2 a set of initial states
I(ABSP) ⊆ S(ABSP)

3 a transition function
τABSP : S(ABSP)→ S(ABSP)

Axiom 2; Abstract States

1 states are p-tuples and closed
by p-isomorphism

2 τABSP commutes with the
p-isomorphism and preserves
the size of the p-tuples.

Imperative Characterization of BSP Algorithms 15 / 28



BSP Programming BSP Equivalences Conclusion

Axiomatic definition (1)
Sequential:

Axiom 1; Sequential Time
1 a set of states S(Aseq)

2 a set of initial states
I(Aseq) ⊆ S(Aseq)

3 a transition function
τAseq : S(Aseq)→ S(Aseq)

Axiom 2; Abstract States

1 states are first-order
structures and closed by
isomorphism

2 τAseq commutes with the
isomorphism

BSP:

Axiom 1; Sequential Time
1 a set of states S(ABSP)

2 a set of initial states
I(ABSP) ⊆ S(ABSP)

3 a transition function
τABSP : S(ABSP)→ S(ABSP)

Axiom 2; Abstract States

1 states are p-tuples and closed
by p-isomorphism

2 τABSP commutes with the
p-isomorphism and preserves
the size of the p-tuples.

Imperative Characterization of BSP Algorithms 15 / 28



BSP Programming BSP Equivalences Conclusion

Axiomatic definition (1)
Sequential:

Axiom 1; Sequential Time
1 a set of states S(Aseq)

2 a set of initial states
I(Aseq) ⊆ S(Aseq)

3 a transition function
τAseq : S(Aseq)→ S(Aseq)

Axiom 2; Abstract States

1 states are first-order
structures and closed by
isomorphism

2 τAseq commutes with the
isomorphism

X=0=λfx.x

Isomorphism+1

Y=1=λfx.fx

X=[]=λfx.x

_::X

Y=[_]=λfx.fx

λnfx.f(nfx)

BSP:

Axiom 1; Sequential Time
1 a set of states S(ABSP)

2 a set of initial states
I(ABSP) ⊆ S(ABSP)

3 a transition function
τABSP : S(ABSP)→ S(ABSP)

Axiom 2; Abstract States

1 states are p-tuples and closed
by p-isomorphism

2 τABSP commutes with the
p-isomorphism and preserves
the size of the p-tuples.

Imperative Characterization of BSP Algorithms 15 / 28



BSP Programming BSP Equivalences Conclusion

Axiomatic definition (1)
Sequential:

Axiom 1; Sequential Time
1 a set of states S(Aseq)

2 a set of initial states
I(Aseq) ⊆ S(Aseq)

3 a transition function
τAseq : S(Aseq)→ S(Aseq)

Axiom 2; Abstract States

1 states are first-order
structures and closed by
isomorphism

2 τAseq commutes with the
isomorphism

BSP:

Axiom 1; Sequential Time
1 a set of states S(ABSP)

2 a set of initial states
I(ABSP) ⊆ S(ABSP)

3 a transition function
τABSP : S(ABSP)→ S(ABSP)

Axiom 2; Abstract States

1 states are p-tuples and closed
by p-isomorphism

2 τABSP commutes with the
p-isomorphism and preserves
the size of the p-tuples.

Imperative Characterization of BSP Algorithms 15 / 28



BSP Programming BSP Equivalences Conclusion

Axiomatic definition (2)

Sequential:

Axiom 3; Bounded Exploration
For every algorithm A there
exists a finite set T of terms
such that for every state X and
Y , if the elements of T have the
same interpretations on X and
Y then ∆(A,X ) = ∆(A,Y ).

BSP:

Axiom 3; Bounded Exploration

Idem but X =
(
X 1, . . . ,X p) and

Y =
(
Y 1, . . . ,Y q) and p = q

and ~∆(A,X ) = ~∆(A,Y )

Axiom 4; Barrier
For every BSP algorithm A there
exists two applications
compA : M(A)→ M(A) and
syncA : S(A)→ S(A) such that

τA

(
X 1, . . . ,X p

)
=

{ (
compA(X 1), . . . ,compA(X p)

)
if compA(X i) 6= X i

syncA
(
X 1, . . . ,X p) otherwise

Imperative Characterization of BSP Algorithms 16 / 28



BSP Programming BSP Equivalences Conclusion

Axiomatic definition (2)

Sequential:

Axiom 3; Bounded Exploration
For every algorithm A there
exists a finite set T of terms
such that for every state X and
Y , if the elements of T have the
same interpretations on X and
Y then ∆(A,X ) = ∆(A,Y ).

x=f(1)   y=f(3)   z=f(5)

f(x):=x+1

x=2  y=4  z=6

x=f(1) y=f(2),… f(n)… 

f(x):=x+1

BSP:

Axiom 3; Bounded Exploration

Idem but X =
(
X 1, . . . ,X p) and

Y =
(
Y 1, . . . ,Y q) and p = q

and ~∆(A,X ) = ~∆(A,Y )

Axiom 4; Barrier
For every BSP algorithm A there
exists two applications
compA : M(A)→ M(A) and
syncA : S(A)→ S(A) such that

τA

(
X 1, . . . ,X p

)
=

{ (
compA(X 1), . . . ,compA(X p)

)
if compA(X i) 6= X i

syncA
(
X 1, . . . ,X p) otherwise

Imperative Characterization of BSP Algorithms 16 / 28



BSP Programming BSP Equivalences Conclusion

Axiomatic definition (2)

Sequential:

Axiom 3; Bounded Exploration
For every algorithm A there
exists a finite set T of terms
such that for every state X and
Y , if the elements of T have the
same interpretations on X and
Y then ∆(A,X ) = ∆(A,Y ).

BSP:

Axiom 3; Bounded Exploration

Idem but X =
(
X 1, . . . ,X p) and

Y =
(
Y 1, . . . ,Y q) and p = q

and ~∆(A,X ) = ~∆(A,Y )

Axiom 4; Barrier
For every BSP algorithm A there
exists two applications
compA : M(A)→ M(A) and
syncA : S(A)→ S(A) such that

τA

(
X 1, . . . ,X p

)
=

{ (
compA(X 1), . . . ,compA(X p)

)
if compA(X i) 6= X i

syncA
(
X 1, . . . ,X p) otherwise

Imperative Characterization of BSP Algorithms 16 / 28



BSP Programming BSP Equivalences Conclusion

Axiomatic definition (2)

Sequential:

Axiom 3; Bounded Exploration
For every algorithm A there
exists a finite set T of terms
such that for every state X and
Y , if the elements of T have the
same interpretations on X and
Y then ∆(A,X ) = ∆(A,Y ).

BSP:

Axiom 3; Bounded Exploration

Idem but X =
(
X 1, . . . ,X p) and

Y =
(
Y 1, . . . ,Y q) and p = q

and ~∆(A,X ) = ~∆(A,Y )

Axiom 4; Barrier
For every BSP algorithm A there
exists two applications
compA : M(A)→ M(A) and
syncA : S(A)→ S(A) such that

τA

(
X 1, . . . ,X p

)
=

{ (
compA(X 1), . . . ,compA(X p)

)
if compA(X i) 6= X i

syncA
(
X 1, . . . ,X p) otherwise

Imperative Characterization of BSP Algorithms 16 / 28



BSP Programming BSP Equivalences Conclusion

Axiomatic definition (2)

Sequential:

Axiom 3; Bounded Exploration
For every algorithm A there
exists a finite set T of terms
such that for every state X and
Y , if the elements of T have the
same interpretations on X and
Y then ∆(A,X ) = ∆(A,Y ).

BSP:

Axiom 3; Bounded Exploration

Idem but X =
(
X 1, . . . ,X p) and

Y =
(
Y 1, . . . ,Y q) and p = q

and ~∆(A,X ) = ~∆(A,Y )

Axiom 4; Barrier
For every BSP algorithm A there
exists two applications
compA : M(A)→ M(A) and
syncA : S(A)→ S(A) such that

τA

(
X 1, . . . ,X p

)
=

{ (
compA(X 1), . . . ,compA(X p)

)
if compA(X i) 6= X i

syncA
(
X 1, . . . ,X p) otherwise

X1 Y1 Z1

X2 Y2 Z2

Xn Yn Zn

...

Xn+1 Yn+1 Zn+1

...

Comp

Comp

States remain the same

Sync

Imperative Characterization of BSP Algorithms 16 / 28



BSP Programming BSP Equivalences Conclusion

ASM and BSP-ASM

Sequential:

Definition ASM
(Π,S(B), I(B))

ASM’s programs Π

Π =def f (t1, . . . , tα) := t0
| if F then Π1

else Π2 endif
| par Π1‖ . . . ‖Πn endpar

BSP:

Definition BSP-ASM
(Π,S(B), I(B),syncB) where
S(B) contains p-tuples of
structures.

Extension of Π

Π =def ...

| fsend (t1, . . . , tα) := tsend

| t rcv := frcv (t1, . . . , tα)

Imperative Characterization of BSP Algorithms 17 / 28



BSP Programming BSP Equivalences Conclusion

ASM and BSP-ASM

Sequential:

Definition ASM
(Π,S(B), I(B))

ASM’s programs Π

Π =def f (t1, . . . , tα) := t0
| if F then Π1

else Π2 endif
| par Π1‖ . . . ‖Πn endpar

BSP:

Definition BSP-ASM
(Π,S(B), I(B),syncB) where
S(B) contains p-tuples of
structures.

Extension of Π

Π =def ...

| fsend (t1, . . . , tα) := tsend

| t rcv := frcv (t1, . . . , tα)

Imperative Characterization of BSP Algorithms 17 / 28



BSP Programming BSP Equivalences Conclusion

ASM and BSP-ASM

Sequential:

Definition ASM
(Π,S(B), I(B))

ASM’s programs Π

Π =def f (t1, . . . , tα) := t0
| if F then Π1

else Π2 endif
| par Π1‖ . . . ‖Πn endpar

BSP:

Definition BSP-ASM
(Π,S(B), I(B),syncB) where
S(B) contains p-tuples of
structures.

Extension of Π

Π =def ...

| fsend (t1, . . . , tα) := tsend

| t rcv := frcv (t1, . . . , tα)

Imperative Characterization of BSP Algorithms 17 / 28



BSP Programming BSP Equivalences Conclusion

Operational semantics

Sequential

∆(f (t1, . . . , tα) := t0,X ) =def {(f , t1
X
, . . . , tα

X
, t0

X
)}

∆(if F then Π1 else Π2 endif,X ) =def ∆(Πi ,X )

where i =

{
1 if F is true on X
2 else

∆(par Π1‖ . . . ‖Πn endpar,X ) =def ∆(Π1,X ) ∪ · · · ∪∆(Πn,X )

BSP

−→
∆(Π, (X 1, · · · ,X p)) =def


(∆(Π,X 1), · · ·∆(Π,X p)) if ∃1 ≤ i ≤ p

such that ∆(Π,X i) 6=∅
syncΠ(X 1, · · · ,X p) else

Imperative Characterization of BSP Algorithms 18 / 28



BSP Programming BSP Equivalences Conclusion

Operational semantics

Sequential

∆(f (t1, . . . , tα) := t0,X ) =def {(f , t1
X
, . . . , tα

X
, t0

X
)}

∆(if F then Π1 else Π2 endif,X ) =def ∆(Πi ,X )

where i =

{
1 if F is true on X
2 else

∆(par Π1‖ . . . ‖Πn endpar,X ) =def ∆(Π1,X ) ∪ · · · ∪∆(Πn,X )

BSP

−→
∆(Π, (X 1, · · · ,X p)) =def


(∆(Π,X 1), · · ·∆(Π,X p)) if ∃1 ≤ i ≤ p

such that ∆(Π,X i) 6=∅
syncΠ(X 1, · · · ,X p) else

Imperative Characterization of BSP Algorithms 18 / 28



BSP Programming BSP Equivalences Conclusion

IMP and BSP-IMP

Sequential:

c =def f (t1, . . . , tα) := t0
| if F {P1} else {P2}
| while F {P}

BSP:

c =def ...

| fsend (t1, . . . , tα) := tsend

| t rcv := frcv (t1, . . . , tα)
| fsync()

P =def ε | c; P

Imperative Characterization of BSP Algorithms 19 / 28



BSP Programming BSP Equivalences Conclusion

Small-Step Semantics

Local execution

Synchronisation

Imperative Characterization of BSP Algorithms 20 / 28



BSP Programming BSP Equivalences Conclusion

Small-Step Semantics

Local execution

Synchronisation

Imperative Characterization of BSP Algorithms 20 / 28



BSP Programming BSP Equivalences Conclusion

Small-Step Semantics rules

Local rules:

f (t1, . . . , tα) := t0; P ? X �i P ? X ⊕ (f , t1
X
, . . . , tα

X
, t0

X
)

while F {P1}; P2 ? X �i P1 # while F {P1}; P2 ? X
if F is true in X

...

One global rule:

∃1 ≤ i ≤ p P i ? X i �i P ′i ? X ′i

〈P1 ? X 1, . . . ,Pp ? X p〉 � 〈P ′1 ? X ′1, . . . ,P ′p ? X ′p〉

Imperative Characterization of BSP Algorithms 21 / 28



BSP Programming BSP Equivalences Conclusion

Fair Simulation

A computation model M1 simulates M2 if ∀P2 ∈ M2 ∃ P1 ∈ M1:

1 “Not too many intemediate variables”

2 ∃ d ∈ N \ {0} and e ∈ N (depending only on P2) such that,
for every execution ~Y of P2, ∃ an execution ~X of P1:

time(P1,X0) = d × time(P2,Y0) + e

Imperative Characterization of BSP Algorithms 22 / 28



BSP Programming BSP Equivalences Conclusion

Fair Simulation

A computation model M1 simulates M2 if ∀P2 ∈ M2 ∃ P1 ∈ M1:

1 “Not too many intemediate variables”

2 ∃ d ∈ N \ {0} and e ∈ N (depending only on P2) such that,
for every execution ~Y of P2, ∃ an execution ~X of P1:

time(P1,X0) = d × time(P2,Y0) + e

X1

X2

X3

...

Y1

Y1’

Y2’

...

Y0

Y2

X1

X2

X3

...

Z1

Z2

Z2’

Z3

Z3’

Z3’’

Imperative Characterization of BSP Algorithms 22 / 28



BSP Programming BSP Equivalences Conclusion

Compilation: from BSP-IMP to BSP-ASM

Main code
ΠP ≡ if ¬bwait then par

Pj∈G(P)
if bPj then [[Pj ]]asm endpar endif

The control flow graph

G(c; P) ≡ G(c); P ∪ G(P)
G(while F {P}) ≡ G(P);while F {P}

...

Compilation of structures (example)

[[fsync(); Q]]asm ≡par
bsync;Q := false
‖bwait := true
‖bQ := true
endpar

Imperative Characterization of BSP Algorithms 23 / 28



BSP Programming BSP Equivalences Conclusion

Compilation: from BSP-IMP to BSP-ASM

Main code
ΠP ≡ if ¬bwait then par

Pj∈G(P)
if bPj then [[Pj ]]asm endpar endif

The control flow graph

G(c; P) ≡ G(c); P ∪ G(P)
G(while F {P}) ≡ G(P);while F {P}

...

Compilation of structures (example)

[[fsync(); Q]]asm ≡par
bsync;Q := false
‖bwait := true
‖bQ := true
endpar

Imperative Characterization of BSP Algorithms 23 / 28



BSP Programming BSP Equivalences Conclusion

Compilation: from BSP-IMP to BSP-ASM

Main code
ΠP ≡ if ¬bwait then par

Pj∈G(P)
if bPj then [[Pj ]]asm endpar endif

The control flow graph

G(c; P) ≡ G(c); P ∪ G(P)
G(while F {P}) ≡ G(P);while F {P}

...

Compilation of structures (example)

[[fsync(); Q]]asm ≡par
bsync;Q := false
‖bwait := true
‖bQ := true
endpar

Imperative Characterization of BSP Algorithms 23 / 28



BSP Programming BSP Equivalences Conclusion

Compilation: from BSP-ASM to BSP-IMP

Translation for the whole machine

bstop := false;
while ¬bstop

Pstep;
while ¬FΠ {Pstep;}
fsync();

Translation of one step

par x := y ‖ y := x endpar

⇒⇒⇒
vy := y ; vx := x ; x := vy ; y := vx ;

Imperative Characterization of BSP Algorithms 24 / 28



BSP Programming BSP Equivalences Conclusion

Compilation: from BSP-ASM to BSP-IMP

Translation for the whole machine

bstop := false;
while ¬bstop

Pstep;
while ¬FΠ {Pstep;}
fsync();

Translation of one step

par x := y ‖ y := x endpar

⇒⇒⇒
vy := y ; vx := x ; x := vy ; y := vx ;

Imperative Characterization of BSP Algorithms 24 / 28



BSP Programming BSP Equivalences Conclusion

Finally

Sequential:

Algoseq = ASM ' Impseq

BSP:

AlgoBSP = BSP−ASM ' ImpBSP

Imperative Characterization of BSP Algorithms 25 / 28



BSP Programming BSP Equivalences Conclusion

Outline

1 BSP Programming

2 Algorithmic Equivalences

3 Conclusion

Imperative Characterization of BSP Algorithms 26 / 28



BSP Programming BSP Equivalences Conclusion

Conclusion

BSP-ASM
Axiomatic definition of BSP algorithms and BSP−ASM
Using fair simulations
AlgoBSP ' BSP−ASM ' ImpBSP

BSPlib is algorithmic complete

Perspectives (Ongoing/Future Work)

Application to other bridging models (Multi-BSP, etc.)
Enumerating what is BSP (BSML) and what is not (Pregel?)

Imperative Characterization of BSP Algorithms 27 / 28



BSP Programming BSP Equivalences Conclusion

Conclusion

BSP-ASM
Axiomatic definition of BSP algorithms and BSP−ASM
Using fair simulations
AlgoBSP ' BSP−ASM ' ImpBSP

BSPlib is algorithmic complete

Perspectives (Ongoing/Future Work)

Application to other bridging models (Multi-BSP, etc.)
Enumerating what is BSP (BSML) and what is not (Pregel?)

Imperative Characterization of BSP Algorithms 27 / 28



BSP Programming BSP Equivalences Conclusion

Conclusion

BSP-ASM
Axiomatic definition of BSP algorithms and BSP−ASM
Using fair simulations
AlgoBSP ' BSP−ASM ' ImpBSP

BSPlib is algorithmic complete

Perspectives (Ongoing/Future Work)

Application to other bridging models (Multi-BSP, etc.)
Enumerating what is BSP (BSML) and what is not (Pregel?)

Imperative Characterization of BSP Algorithms 27 / 28



BSP Programming BSP Equivalences Conclusion

Conclusion

BSP-ASM
Axiomatic definition of BSP algorithms and BSP−ASM
Using fair simulations
AlgoBSP ' BSP−ASM ' ImpBSP

BSPlib is algorithmic complete

Perspectives (Ongoing/Future Work)

Application to other bridging models (Multi-BSP, etc.)
Enumerating what is BSP (BSML) and what is not (Pregel?)

Imperative Characterization of BSP Algorithms 27 / 28



BSP Programming BSP Equivalences Conclusion

Conclusion

BSP-ASM
Axiomatic definition of BSP algorithms and BSP−ASM
Using fair simulations
AlgoBSP ' BSP−ASM ' ImpBSP

BSPlib is algorithmic complete

Perspectives (Ongoing/Future Work)

Application to other bridging models (Multi-BSP, etc.)
Enumerating what is BSP (BSML) and what is not (Pregel?)

Imperative Characterization of BSP Algorithms 27 / 28



BSP Programming BSP Equivalences Conclusion

Conclusion

BSP-ASM
Axiomatic definition of BSP algorithms and BSP−ASM
Using fair simulations
AlgoBSP ' BSP−ASM ' ImpBSP

BSPlib is algorithmic complete

Perspectives (Ongoing/Future Work)

Application to other bridging models (Multi-BSP, etc.)
Enumerating what is BSP (BSML) and what is not (Pregel?)

Imperative Characterization of BSP Algorithms 27 / 28



BSP Programming BSP Equivalences Conclusion

Conclusion

BSP-ASM
Axiomatic definition of BSP algorithms and BSP−ASM
Using fair simulations
AlgoBSP ' BSP−ASM ' ImpBSP

BSPlib is algorithmic complete

Perspectives (Ongoing/Future Work)

Application to other bridging models (Multi-BSP, etc.)
Enumerating what is BSP (BSML) and what is not (Pregel?)

Imperative Characterization of BSP Algorithms 27 / 28



BSP Programming BSP Equivalences Conclusion

Conclusion

BSP-ASM
Axiomatic definition of BSP algorithms and BSP−ASM
Using fair simulations
AlgoBSP ' BSP−ASM ' ImpBSP

BSPlib is algorithmic complete

Perspectives (Ongoing/Future Work)

Application to other bridging models (Multi-BSP, etc.)
Enumerating what is BSP (BSML) and what is not (Pregel?)

Imperative Characterization of BSP Algorithms 27 / 28



Merci !


	BSP Programming
	Algorithmic Equivalences
	Conclusion

