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Introduction

What is an algorithm?
Not a Turing machine
Not a programming language
Every designer writes them in different forms

So?
Axiomatic definition of a sequential algorithm and ASM
Equivalence with a core programming language

And then?
Parallel and/or distributed ASM (Gurevich and al)
Without equivalences with a core programming language
Because no cost model and not a bridging model
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What is a bridging model? For sequential computing

Von Neumann

SoftwareHardware

Quick Sort algorithm

Numerical simulation

ML

C language

Intel X86

AMD Athlon 64

Motorola 68000

PowerPC
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What is a bridging model? For HPC computing

BSP

SoftwareHardware

Parallel Sorting
by Regular Sampling

Heat equation

BSPLIB

BSML

Intel Core i9

IBM Sequoia

SGI Origin 2000
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Bridging model: Bulk Synchronous Parallelism (BSP)

The BSP computer
Defined by:

p pairs CPU/memory
Communication network (g)
Synchronisation unit (L)
Super-steps execution

Properties:
“Confluent”
“Deadlock-free”
Predictable performances

local
computations

p0 p1 p2 p3

communication (⊗g)

barrier (⊕L)

next super-step
...

...
...

...

Pro and cons

Pro Cons
Cost model Not all parallel patterns
Structured parallelism Too regular
Easy to learn No asynchronous warnings
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Examples: broadcasting a value

Direct broadcast (one super-step)
10 2

Cost ≡ p×g×n + L

Broadcast with two super-steps

Cost ≡ 2×g×n + 2×L
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Parallel Sorting by Regular Sampling (PSRS)
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BSP imperative programming
Languages and libraries

1 Dedicated languages: NestStep, BSP++, BSP-Python, . . .
2 BSPLib for C and Java
3 BSPGPU, Ct, Hamma, JBSP, JPUB, . . .
4 MPI collective operations

Communications: BSMP Communications: DRMA
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Examples of C primitives

BSMP and DRMA
Typical BSMP routines:
• bsp_send(dest,buffer,size)
• bsp_nmsgs()
• msg* bsp_findmsg(proc_id,index)

Typical DRMA routines:
• bsp_push_reg(ident,size)
• bsp_get(srcPID,src,offset,dest,nbytes)

bsp_sync() (barrier)

MPI collective operations
MPI_Scatter(sendbuf,sendcount,sendtype,recvbuf,recvcount,recvtype,root,comm)

MPI_Gather(sendbuf,sendcount,sendtype,recvbuf,recvcount,recvtype,root,comm)
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One example: PSRS sorting

PSRS_Sorting(array<T> tab)
begin

seq_sort(tab); (∗ local sorting ∗)
s1←sample(tab); (∗ first sampling ∗)
for i←0 to nprocs−1 do

bsp_send(i,s1[i],size(s1[i]));
done;
bsp_sync();
s_all←[]; (∗ second sampling ∗)
for i←0 to nprocs−1 do

merge(s_all,bsp_findmsg(i,0));
done;
s2←sample(s_all);
...
bsp_sync();
...

end

Problems
1 It is rather a code than an algorithm ...
2 Thus, what is an BSP algorithm?
3 Is my programming language rich enough to programming all the

BSP algorithms?
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Execution using the axiomatic definition

Sequential algorithm: BSP algorithm:
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Axiomatic definition (1)
Sequential:

Axiom 1; Sequential Time
1 a set of states S(Aseq)

2 a set of initial states
I(Aseq) ⊆ S(Aseq)

3 a transition function
τAseq : S(Aseq)→ S(Aseq)

Axiom 2; Abstract States

1 states are first-order
structures and closed by
isomorphism

2 τAseq commutes with the
isomorphism

BSP:

Axiom 1; Sequential Time
1 a set of states S(ABSP)

2 a set of initial states
I(ABSP) ⊆ S(ABSP)

3 a transition function
τABSP : S(ABSP)→ S(ABSP)

Axiom 2; Abstract States

1 states are p-tuples and closed
by p-isomorphism

2 τABSP commutes with the
p-isomorphism and preserves
the size of the p-tuples.
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Axiomatic definition (2)

Sequential:

Axiom 3; Bounded Exploration
For every algorithm A there
exists a finite set T of terms
such that for every state X and
Y , if the elements of T have the
same interpretations on X and
Y then ∆(A,X ) = ∆(A,Y ).

BSP:

Axiom 3; Bounded Exploration

Idem but X =
(
X 1, . . . ,X p) and

Y =
(
Y 1, . . . ,Y q) and p = q

and ~∆(A,X ) = ~∆(A,Y )

Axiom 4; Barrier
For every BSP algorithm A there
exists two applications
compA : M(A)→ M(A) and
syncA : S(A)→ S(A) such that

τA

(
X 1, . . . ,X p

)
=

{ (
compA(X 1), . . . ,compA(X p)

)
if compA(X i) 6= X i

syncA
(
X 1, . . . ,X p) otherwise
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ASM and BSP-ASM

Sequential:

Definition ASM
(Π,S(B), I(B))

ASM’s programs Π

Π =def f (t1, . . . , tα) := t0
| if F then Π1

else Π2 endif
| par Π1‖ . . . ‖Πn endpar

BSP:

Definition BSP-ASM
(Π,S(B), I(B),syncB) where
S(B) contains p-tuples of
structures.

Extension of Π

Π =def ...

| fsend (t1, . . . , tα) := tsend

| t rcv := frcv (t1, . . . , tα)
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Operational semantics

Sequential

∆(f (t1, . . . , tα) := t0,X ) =def {(f , t1
X
, . . . , tα

X
, t0

X
)}

∆(if F then Π1 else Π2 endif,X ) =def ∆(Πi ,X )

where i =

{
1 if F is true on X
2 else

∆(par Π1‖ . . . ‖Πn endpar,X ) =def ∆(Π1,X ) ∪ · · · ∪∆(Πn,X )

BSP

−→
∆(Π, (X 1, · · · ,X p)) =def


(∆(Π,X 1), · · ·∆(Π,X p)) if ∃1 ≤ i ≤ p

such that ∆(Π,X i) 6=∅
syncΠ(X 1, · · · ,X p) else

Imperative Characterization of BSP Algorithms 18 / 28



BSP Programming BSP Equivalences Conclusion

Operational semantics

Sequential

∆(f (t1, . . . , tα) := t0,X ) =def {(f , t1
X
, . . . , tα

X
, t0

X
)}

∆(if F then Π1 else Π2 endif,X ) =def ∆(Πi ,X )

where i =

{
1 if F is true on X
2 else

∆(par Π1‖ . . . ‖Πn endpar,X ) =def ∆(Π1,X ) ∪ · · · ∪∆(Πn,X )

BSP

−→
∆(Π, (X 1, · · · ,X p)) =def


(∆(Π,X 1), · · ·∆(Π,X p)) if ∃1 ≤ i ≤ p

such that ∆(Π,X i) 6=∅
syncΠ(X 1, · · · ,X p) else

Imperative Characterization of BSP Algorithms 18 / 28



BSP Programming BSP Equivalences Conclusion

IMP and BSP-IMP

Sequential:

c =def f (t1, . . . , tα) := t0
| if F {P1} else {P2}
| while F {P}

BSP:

c =def ...

| fsend (t1, . . . , tα) := tsend

| t rcv := frcv (t1, . . . , tα)
| fsync()

P =def ε | c; P
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Small-Step Semantics

Local execution

Synchronisation
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Small-Step Semantics rules

Local rules:

f (t1, . . . , tα) := t0; P ? X �i P ? X ⊕ (f , t1
X
, . . . , tα

X
, t0

X
)

while F {P1}; P2 ? X �i P1 # while F {P1}; P2 ? X
if F is true in X

...

One global rule:

∃1 ≤ i ≤ p P i ? X i �i P ′i ? X ′i

〈P1 ? X 1, . . . ,Pp ? X p〉 � 〈P ′1 ? X ′1, . . . ,P ′p ? X ′p〉
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Fair Simulation

A computation model M1 simulates M2 if ∀P2 ∈ M2 ∃ P1 ∈ M1:

1 “Not too many intemediate variables”

2 ∃ d ∈ N \ {0} and e ∈ N (depending only on P2) such that,
for every execution ~Y of P2, ∃ an execution ~X of P1:

time(P1,X0) = d × time(P2,Y0) + e
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Compilation: from BSP-IMP to BSP-ASM

Main code
ΠP ≡ if ¬bwait then par

Pj∈G(P)
if bPj then [[Pj ]]asm endpar endif

The control flow graph

G(c; P) ≡ G(c); P ∪ G(P)
G(while F {P}) ≡ G(P);while F {P}

...

Compilation of structures (example)

[[fsync(); Q]]asm ≡par
bsync;Q := false
‖bwait := true
‖bQ := true
endpar
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Compilation: from BSP-ASM to BSP-IMP

Translation for the whole machine

bstop := false;
while ¬bstop

Pstep;
while ¬FΠ {Pstep;}
fsync();

Translation of one step

par x := y ‖ y := x endpar

⇒⇒⇒
vy := y ; vx := x ; x := vy ; y := vx ;
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Finally

Sequential:

Algoseq = ASM ' Impseq

BSP:

AlgoBSP = BSP−ASM ' ImpBSP
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