BSP Programming BSP Equivalences Conclusion

Imperative Characterization of BSP Algorithms

Yoann Marquer & Frédéric Gava

Laboratory of Algorithms, Complexity and Logic (LACL)
University of Paris-East

Imperative Characterization of BSP Algorithms 1/28

Conclusion

Outline

o BSP Programming
9 Algorithmic Equivalences

e Conclusion

Imperative Characterization of BSP Algorithms 2/28

Conclusion

Outline

o BSP Programming

Imperative Characterization of BSP Algorithms 3/28

BSP Programming BSP Equivalences Conclusion
000000000) [e]e]

Introduction

What is an algorithm?
@ Not a Turing machine
@ Not a programming language
@ Every designer writes them in different forms

Imperative Characterization of BSP Algorithms 4/28

BSP Programming Conclusion
©00000000 fole]

Introduction

What is an algorithm?
@ Not a Turing machine
@ Not a programming language
@ Every designer writes them in different forms

@ Axiomatic definition of a sequential algorithm and ASM
@ Equivalence with a core programming language

Imperative Characterization of BSP Algorithms 4/28

BSP Programming
000000000

Introduction

What is an algorithm?
@ Not a Turing machine
@ Not a programming language
@ Every designer writes them in different forms

So?
@ Axiomatic definition of a sequential algorithm and ASM
@ Equivalence with a core programming language

And then?

@ Parallel and/or distributed ASM (Gurevich and al)
@ Without equivalences with a core programming language

@ Because no cost model and not a bridging model

v

Imperative Characterization of BSP Algorithms 4/28

BSP Programming ale Conclusion
0@0000000 P

What is a bridging model? For sequential computiﬁg

Intel X86 Quick Sort algorithm

AMD Athlon 64 Numerical simulation

Motorola 68000 ML

PowerPC C language

Imperative Characterization of BSP Algorithms 5/28

BSP Programming ale Conclusion
00000000 fole]

What is a bridging model? For HPC computing

Parallel Sorting
by Regular Sampling

Intel Core i9
IBM Sequoia Heat equation
SGiI Origin 2000 BSPLIB

BSML

Imperative Characterization of BSP Algorithms 6/28

BSP Programming S Conclusion
000800000 > 0 0o

Bridging model: Bulk Syn s Parallelism ()

The computer
Defined by:
@ p pairs CPU/memory

Imperative Characterization of BSP Algorithms 7/28

BSP Programming S Conclusion
000800000 > 0 0o

Bridging model: Bulk Syn s Parallelism ()

The computer
Defined by:
@ p pairs CPU/memory
@ Communication network (g)

Imperative Characterization of BSP Algorithms 7/28

BSP Programming S Conclusion
000800000 > 0 0o

Bridging model: Bulk Syn s Parallelism ()

The computer

Defined by:
@ p pairs CPU/memory
@ Communication network (g)
@ Synchronisation unit (L)

Imperative Characterization of BSP Algorithms 7/28

BSP Programming Conclusion
000800000 fole]

Bridging model: Bulk Synchronous Parallelism (-)

The computer
Defined by:
@ p pairs CPU/memory
@ Communication network (g)
@ Synchronisation unit (L)
@ Super-steps execution

local .
computations

communication (®g)
barrier (®L)
next super-step

Imperative Characterization of BSP Algorithms 7/28

BSP Programming Conclusion
000800000 fole]

Bridging model: Bulk Synchronous Parallelism (-)

The computer
Defined by:
@ p pairs CPU/memory
@ Communication network (g)
@ Synchronisation unit (L)
@ Super-steps execution

local .
computations

communication (®g)

\
-
y ! <‘/\\\

S

@ “Confluent” *+ + t nextsuper-step

Imperative Characterization of BSP Algorithms 7/28

BSP Programming Conclusion
000800000 fole]

Bridging model: Bulk Synchronous Parallelism (-)

The computer
Defined by:
@ p pairs CPU/memory
@ Communication network (g)
@ Synchronisation unit (L)
@ Super-steps execution

local .
computations

communication (®g)

\
-
y ! <‘/\\\

S

@ “Confluent” *+ + t nextsuper-step

@ “Deadlock-free”

Imperative Characterization of BSP Algorithms 7/28

BSP Programming Conclusion
000800000 fole]

Bridging model: Bulk Synchronous Parallelism (-)

The computer
Defined by:
@ p pairs CPU/memory
@ Communication network (g)
@ Synchronisation unit (L)
@ Super-steps execution

local .
computations

communication (®g)

\
-
y ! <‘/\\\

S

@ “Confluent” *+ + t nextsuper-step

@ “Deadlock-free”
@ Predictable performances

v

Imperative Characterization of BSP Algorithms 7/28

BSP Programming Conclusion

000e00000

Bridging model: Bulk Synchronous Parallelism (-)

The computer
Defined by:

Pro || Cons

Cost model Not all parallel patterns
Structured parallelism ||| Too regular

Easy to learn No asynchronous warnings

next super-step

@ “Confluent”

@ “Deadlock-free”
@ Predictable performances

Imperative Characterization of BSP Algorithms 7/28

BSP Programming BSP Equivalences Conclusion
[e]e]e]e] Telelele) [[e]e]

Examples: broadcasting a value

Direct broadcast (one super-step)
0 1 2
[] [| []
| o | | o | | o |

Cost=pxgxn + L

Imperative Characterization of BSP Algorithms 8/28

BSP Programming Conclusion
000080000 fole]

Examples: broadcasting a value

Direct broadcast (one super-step)

] =]
e]

Cost=pxgxn + L

v

Broadcast with two super-steps

Cost=2xgxn + 2xL

Imperative Characterization of BSP Algorithms 8/28

BSP Programming
[e]e]e]ele] lelele)

Parallel Sorting by Regular Sampling (PSRS)

‘e ® ® o @ o ([0g 00606 ¢ _oeee o o
@® SequentalSort ® @ @ @ ® Sequential Sort g @ '@ ® Sequential Sort

‘oe0o 00 00 00O EYY I 'YX
Primary Sample | Primary Sample | Primary Sample
IO XX OO0 NODORIOKX Ol

o000 o000
s, kNt

Secondary Sample i Secondary Sampl

Secondary Sam le. -.. °

Imperative Characterization of BSP Algorithms 9/28

BSP Programming i Conclusion
000000800 fole]

BSP imperative programming

Languages and libraries

@ Dedicated languages: NestStep, BSP++, BSP-Python, ...

Imperative Characterization of BSP Algorithms 10/28

BSP Programming Conclusion
000000800 fole]

BSP imperative programming

Languages and libraries

@ Dedicated languages: NestStep, BSP++, BSP-Python, ...
© BSPLib for C and Java
© BSPGPU, Ct, Hamma, JBSP, JPUB, ...

Imperative Characterization of BSP Algorithms 10/28

BSP Programming i Conclusion
000000800 fole]

BSP imperative programming

Languages and libraries

@ Dedicated languages: NestStep, BSP++, BSP-Python, ...
© BSPLib for C and Java

© BSPGPU, Ct, Hamma, JBSP, JPUB, ...

Q WIPI collective operations

Imperative Characterization of BSP Algorithms 10/28

BSP Programming BSP Equivalences Conclusion
000000800 [[e]e]

BSP imperative programming

Languages and libraries
@ Dedicated languages: NestStep, BSP++, BSP-Python, ...
© BSPLib for C and Java
© BSPGPU, Ct, Hamma, JBSP, JPUB, ...
Q WIPI collective operations

Communications:

CpPU1 Mel CPU2 Mem

| i

I

send(2,v)

.

Synchronisation

CPU1 Mel CPU2 Mem

.

x=recv(1) ‘

o’

Imperative Characterization of BSP Algorithms 10/28

BSP Programming S Conclusion
000000800 C > fole]

BSP imperative programming

Languages and libraries
@ Dedicated languages: NestStep, BSP++, BSP-Python, ...
© BSPLib for C and Java
© BSPGPU, Ct, Hamma, JBSP, JPUB, ...
Q WIPI collective operations

Communications: Communications:
CPUL | Mem cPUz Mem

send(2,v) D get(2,x,y)
v
|

‘ Synchronisation

CPUL Mem CPU2 Mem CPU1 Mem CPU2 Mem

x=recv(1)

o’ v

.

Synchronisation

.

Imperative Characterization of BSP Algorithms 10/28

BSP Programming BSP Equivalences Conclusion
000000080 [e]e]

Examples of C primitives

and
@ Typical BSMP routines:

e bsp_send(dest,buffer,size)
e bsp_nmsgs ()
e msg*x bsp_findmsg (proc_id, index)

Imperative Characterization of BSP Algorithms 11/28

BSP Programming BSP Equivalences Conclusion
000000080 [e]e]

Examples of C primitives

and
@ Typical BSMP routines:

e bsp_send(dest,buffer,size)
e bsp_nmsgs ()
e msg*x bsp_findmsg (proc_id, index)
@ Typical DRMA routines:
e bsp_push_reg(ident,size)
e bsp_get (srcPID, src,offset,dest,nbytes)

Imperative Characterization of BSP Algorithms 11/28

BSP Programming BSP Equivalences Conclusion
000000080) [e]e]

Examples of C primitives

and
@ Typical BSMP routines:

e bsp_send(dest,buffer,size)
e bsp_nmsgs ()
e msg*x bsp_findmsg (proc_id, index)
@ Typical DRMA routines:
e bsp_push_reg(ident,size)
e bsp_get (srcPID, src,offset,dest,nbytes)

@ bsp_sync () (barrier)

Imperative Characterization of BSP Algorithms 11/28

BSP Programming
000000080

Examples of C primitives

and
@ Typical BSMP routines:

e bsp_send(dest,buffer,size)
e bsp_nmsgs ()
e msg*x bsp_findmsg (proc_id, index)

@ Typical DRMA routines:

e bsp_push_reg(ident,size)
e bsp_get (srcPID, src,offset,dest,nbytes)

@ bsp_sync () (barrier)

collective operations

MPI_Scatter (sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)

POA[BIC|D| oamer |A

P1 B

P2 c
gather

P3 o)

MPI_Gather (sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)

v

Imperative Characterization of BSP Algorithms 11/28

BSP Programming Conclusion
000000008 fole]

One example: PSRS sorting

PSRS_Sorting(array<T> tab)

begin
seq_sort(tab); (x local sorting *)
s1<—sample(tab); (x first sampling *)

for i<—0 to nprocs—1 do
bsp_send(i,s1[i],size(s1[i]));

done;

bsp_sync();

s_all+]; (x second sampling)

for i<—0 to nprocs—1 do
merge(s_all,bsp_findmsg(i,0));

done;

s2«<—sample(s_all);

bsp_sync();

end

Imperative Characterization of BSP Algorithms 12/28

BSP Programming S Conclusion

0O0000000e

One example: PSRS sortlng

PSRS_Sorting(array<T> tab)
begin
seq_sort(tab); (* /oca/ sort/ng x)

Problems

@ ltis rather a code than an algorithm ...
@ Thus, what is an BSP algorithm?

Q Is my programming language rich enough to programming all the
BSP algorithms?

done;
s2«<—sample(s_all);

bsp_sync();
end

Imperative Characterization of BSP Algorithms 12/28

gramming i Conclusion

Outline

9 Algorithmic Equivalences

Imperative Characterization of BSP Algorithms 13/28

BSP Equivalences

®00000000000

Executlon using the axiomatic definition

Sequential algorithm: BSP algorithm:

Imperative Characterization of BSP Algorithms 14/28

BSP Progr C BSP Equivalences Conclusion

O®@0000000000

Axiomatic definition (1)

Sequential:

Axiom 1; Sequential Time

Q@ aset of states S(Aseq)

Q@ a set of initial states
I(Aseq) € S(Aseq)

@ a transition function
TAcoy - S(Aseq) = S(Aseq)

Imperative Characterization of BSP Algorithms 15/28

BSP Equivalences
O®@0000000000

Axiomatic definition (1)

B 1
l’ P BN @ ‘
1

b ‘

! (X3) '
; &z :
! :
[- e Sl !

1‘ CX?) e N !

~ ~ .
~o Sem =

“seeeeee=oTTS(A seq)

Imperative Characterization of BSP Algorithms 15/28

BSP Programming BSP Equivalences Conclusion

O®@0000000000

Axiomatic definition (1)

Sequential:

Axiom 1; Sequential Time

Q@ aset of states S(Aseq)

Q@ a set of initial states
I(Aseq) € S(Aseq)

@ a transition function
TAseq © S(Aseq) = S(Aseq)

Axiom 2; Abstract States

@ states are first-order
structures and closed by
isomorphism

Q 74, commutes with the
isomorphism

v

Imperative Characterization of BSP Algorithms 15/28

BSP Equivalences
0e0000000000

Axiomatic definition (1)

Sequential:

Anfx.f(nf@ Isomorphism l

Q 4., commutes with the J

isomorphism

Imperative Characterization of BSP Algorithms 15/28

BSP Progr

Axiomatic definition (1)

Sequential:

Axiom 1; Sequential Time Axiom 1; Sequential Time

Q a set of states S(Aseq)

Q@ a set of initial states
I(Aseq) € S(Aseq)

@ a transition function
TAseq . S(Aseq) — S(Aseq)

BSP Equivalences
0e0000000000

BSP:

Q a set of states S(Azsp)

Q a set of initial states
I(Agsp) € S(Agsp)

Q@ a transition function
TAssr - S(Assp) — S(Agsp)

Conclusion

v

Axiom 2; Abstract States

@ states are first-order
structures and closed by
isomorphism

@ 74.., commutes with the
isomorphism

Axiom 2; Abstract States

@ states are p-tuples and closed
by p-isomorphism

Q TAs.. Commutes with the
p-isomorphism and preserves
the size of the p-tuples.

v

v
Imperative Characterization of BSP Algorithms 15/28

BSP Equivalences

0O0e000000000

atic definition (2)

Sequential:

Axiom 3; Bounded Exploration

For every algorithm A there
exists a finite set T of terms
such that for every state X and
Y, if the elements of T have the
same interpretations on X and
Y then A(A, X) = A(AY).

Imperative Characterization of BSP Algorithms 16/28

BSP Equivalences
000000000000

Axiomatic definition (2)

For ¢
exist
such
Y, if
same

‘ "0 0
\i::i/

Imperative Characterization of BSP Algorithms 16/28

BSP Programming BSP Equivalences Conclusion

0O0e000000000

Axiomatic definition (2)

BSP:

Sequential: Axiom 3; Bounded Exploration

= (X1 P

Axiom 3; Bounded Exploration ofe bu1t X (X eseqd) and
, Y=(Y',...,Y9andp=gq

Fo.r every glgorlthm Athere o E(A,X) _ 5(/4, Y)
exists a finite set T of terms
such that for every state X and
Y, if the elements of T have the
same interpretations on X and
Y then A(A, X) = A(A,Y).

Imperative Characterization of BSP Algorithms 16/28

BSP Programming BSP Equivalences Conclusion

0O0e000000000

Axiomatic definition (2)

BSP:

Sequential: Axiom 3; Bounded Exploration

.
PR O -
Fo.r every glgorithm Athere o E(A X) = E(A, Y)
exists a finite set T of terms
such that for every state X and
Y, if the elements of T have the :
same interpretations on X and For every BSP algorithm A there
Y then A(A, X) = A(A, Y). exists two applications
< compy, : M(A) — M(A) and

sync, : S(A) — S(A) such that

Axiom 4; Barrier

Imperative Characterization of BSP Algorithms 16/28

Axiomatic definition (2)

BSP Equivalences

0O0e000000000

Sequential:

Axiom 3; Bounded §

For every algorithm

exists a finite set T |
such that for every ¢

Y, if the elements o
same interpretation:
Y then A(A, X) = 2

TA<X1,...,XP>:{

Imperative Characterization of BSP Algorithms

nded Exploration

- (X1,...,XP) and

Y9 andp=gq
<3 o™ =A(AY)
States remain the same
ier
2 algorithm A there
plications

l) - M(A) and
— S(A) such that

4

(comp,;(X1), ...,comp4(XP)) ifcomp4(X') # X'

sync, (X',..., XP) otherwise

16/28

BSP Programming BSP Equivalences Conclusion

O00®00000000

ASM and BSP-ASM

Sequential: BSP:

Definition ASM
(1, 8(B). I(B))

Definition BSP-ASM

(N, S(B), I(B),syncg) where
S(B) contains p-tuples of
structures.

Imperative Characterization of BSP Algorithms 17/28

BSP Programming BSP Equivalences Conclusion

O00®00000000

ASM and BSP-ASM

Sequential: BSP:
Definition ASM Definition BSP-ASM

(N, S(B), I(B), syncg) where
(N, S(B), I(B)) S(B) contains p-tuples of

structures.
ASM’s programs 1

I'I:def f(t1,...,ta) = to
| if F then Iy
elsell, endif
| par M4|...||N, endpar

Imperative Characterization of BSP Algorithms 17/28

BSP Equivalences
000800000000

SM and BSP-ASM

Sequential: BSP:

Definition ASM
(1, 8(B). I(B))

Definition BSP-ASM

(N, S(B), I(B),syncg) where
S(B) contains p-tuples of
structures.

ASM’s programs [l

Extension of I

I'I:def f(t1,...,ta) = to
‘ if F then I4 . M =g
elselly endif | fena(ty t,) = tsend
| par Mq|...||Ns endpar |1 = fro (b, ..., L)

Imperative Characterization of BSP Algorithms 17/28

BSP Equivalences
0000e0000000

tional semantics

Sequential

—X —X X
A(f(t17"'7ta) ::t07X):def{(f7t1 7"'7ta ato)

A(1if F then My else My endif, X) =qor A(M;, X)

=

1if Fistrue on X

where | = { 5 else

A(par Mq||...||Ny endpar, X) =ger A(M4, X)U--- U A(Mp, X)

4

Imperative Characterization of BSP Algorithms 18/28

BSP Programming BSP Equivalences Conclusion

0O000@0000000

Operational semantics

Sequential

—X —X X
A(f(t17"'7ta) ::t07X):def{(f7t1 7"'7ta ato)

A(1if F then My else My endif, X) =qor A(M;, X)

=

1if Fistrue on X

where | = { 5 else

A(par Mq||...||Ny endpar, X) =ger A(M4, X)U--- U A(Mp, X)

4

BSP

. (A(M,X"),---A(N,XP)) #31<i<p

AN, (X XP)) =ger such that A(TT, X') #£ 0
sync(X',---, XP) else

v

Imperative Characterization of BSP Algorithms 18/28

ramming BSP Equivalences Conclusion
Jele} 000008000000 [e]e]

IMP and BSP-IMP

Sequential: BSP:
C =def ---
C —def f(t1, e ta) =1y ‘ fsend(t1 pooog tOt) =
| if F {P;} else {Ps} | % = frov(ty, - - s ta)
| while F {P} | fsync()
P =def € ’ c, P

Imperative Characterization of BSP Algorithms 19/28

BSP Programming BSP Equivalences Conclusion
000000800000

Small-Step Semantics

Local execution

Imperative Characterization of BSP Algorithms 20/28

BSP Programming BSP Equivalences Conclusion
000000800000 [e]e]

Small-Step Semantics

Local execution

Synchronisation

Comm
— [T

— [T

Imperative Characterization of BSP Algorithms 20/28

BSP Equivalences Conclusion
000000080000 fole]

Small-Step Semantics rules

Local rules:
f(tyeo b)) = i P X T Pa X @ (LE e T T0)
while F {Pi}; Pox X =" Py gwhile F {Pi}; Pox X
if Fistruein X

One global rule:
N<i<p PxX = PlxX!
(P'x X', PPxXP) = (P 5 XM, ... PP x XP)

Imperative Characterization of BSP Algorithms 21/28

BSP Progr C BSP Equivalences Conclusion
000000008000 00

Fair Simulation

A computation model My simulates Ms if VP, € Mo 4 Py € Mjy:

@ “Not too many intemediate variables”

@ 3d e N\ {0} and e € N (depending only on P,) such that,
for every execution Y of P,, 3 an execution X of P;:

time(Py, Xo) = d x time(P2, Yp) + e

Imperative Characterization of BSP Algorithms 22/28

Imperative Characterization of BSP Algorithms

BSP Equivalences Conclusion
000000000800 fole]

Compilation: from BSP-IMP to BSP-ASM

Main code

Mp = if —bwait then par if bp then [Pj]asm endpar endif
Pieg(P)

Imperative Characterization of BSP Algorithms 23/28

BSP Programming BSP Equivalences Conclusion
000000000800 [e]e]

Compilation: from BSP-IMP to BSP-ASM

Mp = if —bwait then par if bp then [Pj]asm endpar endif
Pieg(P)

v

The control flow graph

Gg(c; P)=g(c);, PUG(P)
G(while F {P}) =G(P);while F {P}

A\

Imperative Characterization of BSP Algorithms 23/28

BSP Programming BSP Equivalences Conclusion
000000000800 [e]e]

Compilation: from BSP-IMP to BSP-ASM

Mp = if —bwait then par if bp then [Pj]asm endpar endif
Pieg(P)

The control flow graph

G(c; P) =g(c); PUG(P)
G(while F {P}) G(P);while F {P}

Compilation of structures (example)

[[fsync ; Q]]asm =par
bsyne.q := false

| Bwait := true
|bq = true
endpar

i
Imperative Characterization of BSP Algorithms 23/28

BSP Equivalences Conclusion
000000000080 fole]

Compllatlon from BSP-ASM to BSP-IMP

Translation for the whole machine

bstop = false;
while _‘bstop
Pstep;
While _‘F|'| {Pstep’}

fsync();

Imperative Characterization of BSP Algorithms 24/28

BSP Programming BSP Equivalences Conclusion
000000000080 [e]e]

Compilation: from BSP-ASM to BSP-IMP

Translation for the whole machine

bstop = false;
while _‘bstop

Pstep;
While _‘F|'| {Pstep’}

fsync();

Translation of one step

par X: =y || ¥ := X endpar

Imperative Characterization of BSP Algorithms 24/28

BSP Equivalences
00000000000 e

Finally

Sequential: BSP:
Algo.., = ASM ~ Imp,,, Algogsp = BSP—ASM ~ Impggp

Imperative Characterization of BSP Algorithms 25/28

BSP Programming BSP Equivalences Conclusion

Outline

e Conclusion

Imperative Characterization of BSP Algorithms 26/28

mming Conclusion
0

Conclusion

BSP-ASM

Imperative Characterization of BSP Algorithms 27/28

BSP Pro C BSP Equivalences Conclusion
) [le]

Conclusion

BSP-ASM
@ Axiomatic definition of BSP algorithms and BSP—ASM

Imperative Characterization of BSP Algorithms 27/28

BSP Programming BSP Equivalences Conclusion
) ®0

Conclusion

BSP-ASM
@ Axiomatic definition of BSP algorithms and BSP—ASM
@ Using fair simulations

Imperative Characterization of BSP Algorithms 27/28

Conclusion
[le]

BSP-ASM
@ Axiomatic definition of BSP algorithms and BSP—ASM
@ Using fair simulations
@ Algogsp ~ BSP—ASM ~ Impgsp

Imperative Characterization of BSP Algorithms 27/28

Conclusion
[le]

BSP-ASM

@ Axiomatic definition of BSP algorithms and BSP—ASM
@ Using fair simulations

@ Algogsp ~ BSP—ASM ~ Impgsp

@ BSPIib is algorithmic complete

Imperative Characterization of BSP Algorithms 27/28

BSP Programming Conclusion
®0

Conclusion

BSP-ASM

@ Axiomatic definition of BSP algorithms and BSP—ASM
@ Using fair simulations

@ Algogsp ~ BSP—ASM ~ Impgsp

@ BSPIib is algorithmic complete

Perspectives (Ongoing/Future Work)

Imperative Characterization of BSP Algorithms 27/28

BSP Programming Conclusion
®0

Conclusion

BSP-ASM

@ Axiomatic definition of BSP algorithms and BSP—ASM
@ Using fair simulations

@ Algogsp ~ BSP—ASM ~ Impgsp

@ BSPIib is algorithmic complete

Perspectives (Ongoing/Future Work)
@ Application to other bridging models (Multi-BSP, etc.)

Imperative Characterization of BSP Algorithms 27/28

BSP Programming Conclusion
®0

Conclusion

BSP-ASM

@ Axiomatic definition of BSP algorithms and BSP—ASM
@ Using fair simulations

@ Algogsp ~ BSP—ASM ~ Impgsp

@ BSPIib is algorithmic complete

Perspectives (Ongoing/Future Work)
@ Application to other bridging models (Multi-BSP, etc.)
@ Enumerating what is BSP (BSML) and what is not (Pregel?)

V.

Imperative Characterization of BSP Algorithms 27/28

Merci !

	BSP Programming
	Algorithmic Equivalences
	Conclusion

