
Automatic Software Veri�cation of
BSPlib-programs:

Replicated Synchronization

Arvid Jakobsson

2017-03-20

Supervisors: G. Hains, W. Suijlen, F. Loulergue, F. Dabrowski, W.
Bousdira

Context

I Huawei: World-leading provider of ICT-solutions

I Huawei has an increasing need for embedded parallel software

I Successful software must be safe and e�cient

I Formal method gives mathematical guarantees of safety and
e�ciency

I Université d'Orléans (Laboratoire d'Informatique Fondamental):
Strong research focus on formal methods and parallel computing

Overview of AVSBSP

I Goal of the project: a secure, statically veri�ed basis for e�cient
BSPlib programming

I Bulk Synchronous Parallel: simple but powerful model for parallel
programming,

I BSPlib: a library for BSP-programming in C

Overview of AVSBSP

I Main track: Developing automatic tools for veri�cation of BSPlib
based on formal methods.

I Correct synchronization
I Correct communication
I Correct API usage

⇒ Automatic veri�cation of safety

I Side-track: Automatic Cost Analysis
I Automatic BSP cost formula derivation

⇒ Automatic veri�cation of performance

Main-track: Veri�cation

I Main track: Developing automatic tools for veri�cation of BSPlib
based on formal methods.

I Correct synchronization
I Correct communication
I Correct API usage

⇒ Automatic veri�cation of safety

Motivating example (1)

I Long scienti�c calculations on cluster in parallel.

I But come Monday: calculation crashed after 10 hours :(

I What went wrong? Let's look at the code!

Motivating example (2)

I Single Program, Multiple data: the same program is run in parallel
on p processes:

// . . .
double x = 0 . 0 ;
f o r (i n t i = 0 ; i < 100 ; ++i) {

x = f (x) ;

// . . .
}

Figure: Parallel SPMD program: Iterative calculation

Motivating example (2)

double t0 = bsp_time () ;
double x = 0 . 0 ;
f o r (i n t i = 0 ; i < 100 ; ++i) {

x = f (x) ;

double t1 = bsp_time () ;
i f (t1 - t0 > 1 . 0) {

p r i n t_p r o g r e s s (x) ;
t0 = t1 ;

}
}

Figure: Buggy parallel SPMD program: Harmless printing?

Motivating example (2)

vo id p r i n t_p r o g r e s s (double x) {
i n t p = bsp_nprocs () ;
// P r i n t p r o g r e s s f o r p r o c e s s 0 , 1 , 2 , . . .
f o r (i n t s = 0 ; s < p ; ++p) {

i f (bsp_pid () == s) {
p r i n t f (" p r o g r e s s (%d) : %g\n" , s , x) ;

}
bsp_sync();

}
}

Figure: Buggy parallel SPMD program: Harmless printing?

Motivating example (2)

double t0 = bsp_time () ;
double x = 0 . 0 ;
f o r (i n t i = 0 ; i < 100 ; ++i) {

x = f (x) ;

double t1 = bsp_time () ;
i f (t1 - t0 > 1 . 0) {

p r i n t_p r o g r e s s (x) ; // s y n c h r o n i z i n g
t0 = t1 ;

}
}

Figure: Buggy parallel SPMD program: Harmless printing?

Motivating example (2)

double t0 = bsp_time () ;
double x = 0 . 0 ;
f o r (i n t i = 0 ; i < 100 ; ++i) {

x = f (x) ;

double t1 = bsp_time () ;
i f (t1 - t0 > 1.0) { // P r o c e s s e s ag r e e on t h i s c o n d i t i o n ?

p r i n t_p r o g r e s s (x) ; // s y n c h r o n i z i n g .
t0 = t1 ;

}
}

Figure: Buggy parallel SPMD program: Processes agree?

Motivating example (3): Conclusion

I Source of bug: Program hangs since choice to synchronize or not
(inside print_progress(x)) depends on a value local to each
process (bsp_time()).

I Possible solution: To synchronize or not must only depend on a
condition with the same value on all processes.

I Goal: Enforce this solution statically.

Background: Bulk synchronous parallel (1)

I Bulk synchronous parallel (BSP): model of parallel computing

I BSP computation: a sequence of super-steps executed by a �xed
number of p processes.

I Each super-step is composed of:

1. Local computation by each process, followed by

2. Communication between processes, followed by

3. A synchronization barrier. Go back to Step 1 or terminate.

Background: Bulk synchronous parallel (2)

I Invented in the 80's by Leslie Valiant, and several implementations
exists, notably: BSPlib, Pregel, MapReduce, most linear algebra
packages. . .

I Bene�ts of BSP compared to other models of parallel computation:
I Deadlock and data race free
I Simple but realistic cost model
I Simpli�es algorithm design

Background: BSPlib

I BSPlib: library and interface speci�cation for BSP in C.

I BSPlib follows the Single Program Multiple Data-model (SPMD).

I Small set of primitives (20):

I bsp_begin, bsp_end, bsp_pid, bsp_nprocs, bsp_get, bsp_put,

bsp_sync, . . .

I Several implementations exists: The Oxford BSP Toolset, Paderborn
University BSP, MulticoreBSP, Epiphany BSP. . .

BSPlite

I Toy-language "BSPlite".

I Grammar of BSPlite:

expr 3 e ::= nprocs | pid | x | n | e + e | e − e | e × e
bexpr 3 b ::= true | false | e < e | e = e | b or b | b and b | !b
cmd 3 c ::= x := e | skip | sync | c ; c | if b then c else c end

| while b do c end

I pid, returns local processor id from P: it introduces variation in
evaluation between processes.

BSPlite local semantics

I Local semantics for local computation in each process:

→i : cmd × Σ→ T × Σ

Σ = X→ N
T = {Ok} ∪ {Wait(c) | c ∈ cmd}

I 〈c , σ〉 →i 〈t, σ′〉 denotes one step of local-computation with
termination state t by processor with id i .

I Local semantics are standard (big-step, operational), except sync
which stops local computation and returns the rest of the program
as a continuation.

BSPlite global semantics

I Global semantics moves the computation forward globally from one
super-step to the next when all p local processes has completed:

→ : cmdp × Σp × (Σp ∪ {Ω})

I One step of global computation either:

1. terminates correctly: 〈C ,E〉 → E ′

2. synchronization incorrectly: 〈C ,E〉 → Ω

I The BSP meaning of program c in a Single Program Multiple Data
(SPMD) context: 〈[c]i∈P,E 〉 → E ′.

BSPlite example programs

Buggy program from the introduction

cnok = [I := 0]1;

[X := pid]2;

while [I < 100]3 do

[sync]4;

if [X = 0]5 then

[sync]6

else

[skip]7

[end];

[I := I + 1]8;

end

Correct program

cok = [I := 0]1;

while [I < 100]2 do

[sync]3;

[I := I + 1]4;

end

Problem formulation

I A program c is synchronization error free, if

6 ∃E , 〈[c]i∈P,E 〉 → Ω

I Goal: guarantee that BSPlib programs are synchronization error free.

I cok synchronization error free, cnok is not.

Replicated synchronization

I Textually aligned synchronization: in each super-step, all local
processors stop at the same instance of the same sync-primitive.

I A program with textually aligned synchronization has no
synchronization errors.

I Replicated synchronization: statically veri�ed condition for having
textually aligned synchronization.

I Program has replicated synchronization if all conditionals and loops
with bodies which contains sync are pid-independent.

I A variable is pid-independent when it has no data- nor
control-dependency on pid.

I Pid-independent variables goes through the same series of values on
all processors

Replicated synchronization

I Textually aligned synchronization: in each super-step, all local
processors stop at the same instance of the same sync-primitive.

I A program with textually aligned synchronization has no
synchronization errors.

I Replicated synchronization: statically veri�ed condition for having
textually aligned synchronization.

I Program has replicated synchronization if all conditionals and loops
with bodies which contains sync are pid-independent.

I A variable is pid-independent when it has no data- nor
control-dependency on pid.

I Pid-independent variables goes through the same series of values on
all processors

Replicated synchronization

I Textually aligned synchronization: in each super-step, all local
processors stop at the same instance of the same sync-primitive.

I A program with textually aligned synchronization has no
synchronization errors.

I Replicated synchronization: statically veri�ed condition for having
textually aligned synchronization.

I Program has replicated synchronization if all conditionals and loops
with bodies which contains sync are pid-independent.

I A variable is pid-independent when it has no data- nor
control-dependency on pid.

I Pid-independent variables goes through the same series of values on
all processors

BSPlite example programs

Buggy program from the introduction

cnok = [I := 0]1;

[X := pid]2;

while [I < 100]3 do

[sync]4;

if [X = 0]5 then

[sync]6

else

[skip]7

[end];

[I := I + 1]8;

end

Correct program

cok = [I := 0]1;

while [I < 100]2 do

[sync]3;

[I := I + 1]4;

end

Replicated synchronization: Good software engineering
practice

I Replicate synchronization codi�es good parallel software engineering
practices

I The condition is simple to understand

I Makes parallel code easier to understand

I All programs we have surveyed are implicitly written in this style

I Our analysis statically veri�es that BSPlib code meets this condition,
and so is synchronization error free

Statical analysis for �nding pid -independent variables

I Reformulation of type system of Barrier Inference [Aiken & Gay '98]
as a data-�ow analysis

I We impose stronger requirements on the analyzed program: no
synchronization in branches where guard-expression is not
pid -independent.

I Idea is to �nd variables and program locations which does not have
a data- or control-dependency on pid

I The abstract state in the data-�ow analysis for each program
location contains (1) the set of variables statically guaranteed to be
pid -independent at that point (2) the pid -independence of each
guard-expression in which the point is nested.

Statically verifying "Replicated synchronization"

I With data-�ow analysis, simple to verify that a program has
replicated synchronization: all guard-conditions for if- and
while-statements which contains sync has a replicated
guard-conditions:

RS](c) =
∧

(l,b,c′)∈guards(c)

[sync] 6∈ c ′ ∨ (FV (b) ⊆ PI (l) ∧ pid 6∈ b)

Conclusion and future work

I Contributions:
I Formulating the correctness criterion �Replicated synchronization�
I Formalized and proved static analysis for detecting Replicated

synchronization as a data-�ow analysis for BSPlite
I Implementation as a Frama-C plugin, ∼2000 lines of OCaml-code

I Future work includes:
I Use as a building block for further analyses: communication,

cost-analysis, . . .
I Extend target language: pointers, functions, communication, . . .
I Coq formalization

	Context
	Bulk synchronous programming with BSPlib
	BSPlite
	Problem formulation

	Solution
	Textual alignment and Replicated synchronization
	"Replicated synchronization": Good software engineering practice
	Statically verifying "Replicated synchronization"

	Final words
	Conclusion and future work

