Automatic Software Verification of
BSPlib-programs:
Replicated Synchronization

Arvid Jakobsson

2017-03-20

Supervisors: G. Hains, W. Suijlen, F. Loulergue, F. Dabrowski, W.

Bousdira
LIEe QD)
HUAVVvEI

Context

vV v vV

Huawei: World-leading provider of ICT-solutions
Huawei has an increasing need for embedded parallel software
Successful software must be safe and efficient

Formal method gives mathematical guarantees of safety and
efficiency

Université d’Orléans (Laboratoire d'Informatique Fondamental):
Strong research focus on formal methods and parallel computing

Overview of AVSBSP

» Goal of the project: a secure, statically verified basis for efficient
BSPIib programming

» Bulk Synchronous Parallel: simple but powerful model for parallel
programming,

» BSPIib: a library for BSP-programming in C

Overview of AVSBSP

» Main track: Developing automatic tools for verification of BSPIlib
based on formal methods.
» Correct synchronization
» Correct communication
> Correct API usage
= Automatic verification of safety
» Side-track: Automatic Cost Analysis

» Automatic BSP cost formula derivation
= Automatic verification of performance

Main-track: Verification

» Main track: Developing automatic tools for verification of BSPIib
based on formal methods.
» Correct synchronization
» Correct communication
> Correct API usage
= Automatic verification of safety

Motivating example (1)

» Long scientific calculations on cluster in parallel.
» But come Monday: calculation crashed after 10 hours :(
» What went wrong? Let's look at the code!

Motivating example (2)

> Single Program, Multiple data: the same program is run in parallel
on p processes:

doui)ie x = 0.0

for (int i = 0; i < 100; ++i) {
x = f(x)
//

3

Figure: Parallel SPMD program: lterative calculation

Motivating example (2)

double t0 = bsp_time();
double x = 0.0;

i =0; i < 100; ++i) {
f(x

for (int
):
double tl1 = bsp_ time();
if (t1 - t0 > 1.0) {
print_progress(x);
t0 = tl;
}
3

Figure: Buggy parallel SPMD program: Harmless printing?

Motivating example (2)

void print_ progress(double x) {
int p = bsp_nprocs();
// Print progress for process 0, 1, 2,
for (int s = 0; s < p; ++p) {
if (bsp_pid() = s) {
printf("progressy(%d): %g\n", s, x);
}

bsp _sync();

Figure: Buggy parallel SPMD program: Harmless printing?

Motivating example (2)

double t0 = bsp_time();
double x = 0.0;

|:O|<100;-{—|—i){
f(x

for (int
)i
double tl1 = bsp_ time();
if (t1 - t0 > 1.0) {
print_progress(x); // synchronizing
t0 = tl;
}
b

Figure: Buggy parallel SPMD program: Harmless printing?

Motivating example (2)

double t0 = bsp_time();

double x
for (int

=0§)
|:0|<100;-{—|—i){
f(x);

double tl1 = bsp_ time();

if (t1-t0>1.0) { // Processes agree on this condition?
print _progress(x); // synchronizing.
t0 = tl;

Figure: Buggy parallel SPMD program: Processes agree?

Motivating example (3): Conclusion

» Source of bug: Program hangs since choice to synchronize or not
(inside print_progress(x)) depends on a value local to each
process (bsp_time()).

» Possible solution: To synchronize or not must only depend on a
condition with the same value on all processes.

» Goal: Enforce this solution statically.

Background: Bulk synchronous parallel (1)

» Bulk synchronous parallel (BSP): model of parallel computing

» BSP computation: a sequence of super-steps executed by a fixed
number of p processes.
» Each super-step is composed of:

1. Local computation by each process, followed by

2. Communication between processes, followed by

3. A synchronization barrier. Go back to Step 1 or terminate.
Asynchronous computations Communications Next superstep

local computation 0

local computation 1

local computation 2

local computation 3

Figure: A BSP superstep

Background: Bulk synchronous parallel (2)

» Invented in the 80’s by Leslie Valiant, and several implementations
exists, notably: BSPlib, Pregel, MapReduce, most linear algebra
packages. ..

» Benefits of BSP compared to other models of parallel computation:

> Deadlock and data race free
» Simple but realistic cost model
> Simplifies algorithm design

Background: BSPlib

v

BSPIib: library and interface specification for BSP in C.
BSPIlib follows the Single Program Multiple Data-model (SPMD).
Small set of primitives (20):

v

v

> bsp_begin, bsp_end, bsp_pid, bsp_nprocs, bsp_get, bsp_put,
bsp_sync, ...

v

Several implementations exists: The Oxford BSP Toolset, Paderborn
University BSP, MulticoreBSP, Epiphany BSP. ..

BSPlite

» Toy-language "BSPlite".
» Grammar of BSPlite:
expr > €

nprocs | pid | x| njet+e|le—e|lexe

bexpr > b 1= true|false|e<e|e=e|borb|bandb]|!b
emd > ¢ = x:=e|skip|sync]|c;c|if bthencelsecend
| while bdo cend

» pid, returns local processor id from P: it introduces variation in
evaluation between processes.

BSPlite local semantics

» Local semantics for local computation in each process:

-l iemd x X - TxX
>=X—=>N
T = {0k} U {Wait(c) | c € cmd}

» (c,0) = (t,o’) denotes one step of local-computation with
termination state t by processor with id i.

» Local semantics are standard (big-step, operational), except sync
which stops local computation and returns the rest of the program
as a continuation.

BSPlite global semantics

» Global semantics moves the computation forward globally from one
super-step to the next when all p local processes has completed:

— 1 emd? x £P x (ZPU{Q})

» One step of global computation either:
1. terminates correctly: (C, E) — E’
2. synchronization incorrectly: (C, E) — Q
» The BSP meaning of program c in a Single Program Multiple Data
(SPMD) context: ([c]icp, E) — E’.

BSPlite example programs
Buggy program from the introduction

Cnok = [I := 0]
[X := pid]?;
while [I < 100]® do
[sync]®;
if [X = 0]° then
[sync]®
else
[skip]’
[end]’
[I:=1+15

end

Correct program

Cok =[I:= 0]1;
while [I < 100]? do
[sync]®;
[I:=1+1]%

end

Problem formulation

» A program c is synchronization error free, if
/HE, <[C]i€]P’a E> — Q

» Goal: guarantee that BSPIib programs are synchronization error free.

> Cox synchronization error free, cpok is not.

Replicated synchronization

» Textually aligned synchronization: in each super-step, all local
processors stop at the same instance of the same sync-primitive.

> A program with textually aligned synchronization has no
synchronization errors.

Replicated synchronization

» Textually aligned synchronization: in each super-step, all local
processors stop at the same instance of the same sync-primitive.

> A program with textually aligned synchronization has no
synchronization errors.

» Replicated synchronization: statically verified condition for having
textually aligned synchronization.

» Program has replicated synchronization if all conditionals and loops
with bodies which contains sync are pid-independent.

Replicated synchronization

» Textually aligned synchronization: in each super-step, all local
processors stop at the same instance of the same sync-primitive.

> A program with textually aligned synchronization has no
synchronization errors.

» Replicated synchronization: statically verified condition for having
textually aligned synchronization.

» Program has replicated synchronization if all conditionals and loops
with bodies which contains sync are pid-independent.

» A variable is pid-independent when it has no data- nor
control-dependency on pid.

» Pid-independent variables goes through the same series of values on
all processors

BSPlite example programs
Buggy program from the introduction

Cnok = [I := 0]
[X := pid]?;
while [I < 100]® do
[sync]®;
if [X = 0]° then
[sync]®
else
[skip]’
[end]’
[I:=1+15

end

Correct program

Cok =[I:= 0]1;
while [I < 100]? do
[sync]®;
[I:=1+1]%

end

Replicated synchronization: Good software engineering
practice

vV v v v

Replicate synchronization codifies good parallel software engineering
practices

The condition is simple to understand
Makes parallel code easier to understand
All programs we have surveyed are implicitly written in this style

Our analysis statically verifies that BSPlib code meets this condition,
and so is synchronization error free

Statical analysis for finding pid-independent variables

» Reformulation of type system of Barrier Inference [Aiken & Gay '98]
as a data-flow analysis

» \We impose stronger requirements on the analyzed program: no
synchronization in branches where guard-expression is not
pid-independent.

> |dea is to find variables and program locations which does not have
a data- or control-dependency on pid

» The abstract state in the data-flow analysis for each program
location contains (1) the set of variables statically guaranteed to be
pid-independent at that point (2) the pid-independence of each
guard-expression in which the point is nested.

Statically verifying "Replicated synchronization"

» With data-flow analysis, simple to verify that a program has
replicated synchronization: all guard-conditions for if- and
while-statements which contains sync has a replicated
guard-conditions:

RS*(c) = A [sync] & 'V (FV(b) C PI(I) A pid & b)
(I,b,c")€guards(c)

Conclusion and future work

» Contributions:
» Formulating the correctness criterion “Replicated synchronization”
» Formalized and proved static analysis for detecting Replicated
synchronization as a data-flow analysis for BSPlite
> Implementation as a Frama-C plugin, ~2000 lines of OCaml-code

» Future work includes:
> Use as a building block for further analyses: communication,
cost-analysis, ...
> Extend target language: pointers, functions, communication, ...
» Coq formalization

	Context
	Bulk synchronous programming with BSPlib
	BSPlite
	Problem formulation

	Solution
	Textual alignment and Replicated synchronization
	"Replicated synchronization": Good software engineering practice
	Statically verifying "Replicated synchronization"

	Final words
	Conclusion and future work

