
Verification of Concurrent Embedded Software
by Abstract Interpretation

Antoine Miné

LIP6
University Pierre and Marie Curie

Paris, France

LaMHA/LTP Day
11 October 2017



Introduction

Static analysis
Goal: program verification by static analysis

source

int search(int* t, int n) {
int i;
for (i=0; i<n; i++) {

if (t[i]) break;
}
return t[i];

}

=⇒

analysis result

int search(int* t, int n) {
int i;
for (i=0; i<n; i++) {

// 0 ≤ i < n
if (t[i]) break;

}
// 0 ≤ i ≤ n ∨ n < 0
return t[i];

}

3

7

work directly on the source code
infer properties on program executions
automatically (cost effective)

by constructing dynamically a semantic abstraction of the program
deduce program correctness or raise alarms
implicit specification: absence of RTE; or user-defined properties: contracts

with approximations (efficient, but possible false alarms)

soundly (no false positive)

We use the abstract interpretation theory.
LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 2 / 37



Introduction

Outline

More specifically:
focus on accessibility and numeric properties of program variables

with application to validation
proof of absence of arithmetic overflow, invalid operation, illegal memory access, etc.

on concurrent embedded programs
adding: scheduling, process priorities, proof of absence of data-race or deadlock

Outline:

Abstract interpretation primer

The Astrée analyzer for embedded synchronous C code

The AstréeA extension to embedded coucurrent C code

Future directions

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 3 / 37



Abstract Interpretation

Abstract Interpretation

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 4 / 37



Abstract Interpretation

Abstract interpretation
Abstract interpretation: theory of the approximation of (program) semantics

Principle: be tractable by reasoning at an abstract level

concrete executions : {(0, 3), (5.5, 0), (12, 7), . . .} (not computable)
box domain : X ∈ [0, 12] ∧ Y ∈ [0, 8] (linear cost)
polyhedra domain : 6X + 11Y ≥ 33 ∧ · · · (exponential cost)

=⇒ various abstractions, trade-off cost vs. precision and expressiveness

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 5 / 37



Abstract Interpretation

Abstract interpretation
Abstract interpretation: theory of the approximation of (program) semantics

Principle: be tractable by reasoning at an abstract level

concrete executions : {(0, 3), (5.5, 0), (12, 7), . . .} (not computable)

box domain : X ∈ [0, 12] ∧ Y ∈ [0, 8] (linear cost)
polyhedra domain : 6X + 11Y ≥ 33 ∧ · · · (exponential cost)

=⇒ various abstractions, trade-off cost vs. precision and expressiveness

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 5 / 37



Abstract Interpretation

Abstract interpretation
Abstract interpretation: theory of the approximation of (program) semantics

Principle: be tractable by reasoning at an abstract level

concrete executions : {(0, 3), (5.5, 0), (12, 7), . . .} (not computable)
box domain : X ∈ [0, 12] ∧ Y ∈ [0, 8] (linear cost)

polyhedra domain : 6X + 11Y ≥ 33 ∧ · · · (exponential cost)

=⇒ various abstractions, trade-off cost vs. precision and expressiveness

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 5 / 37



Abstract Interpretation

Abstract interpretation
Abstract interpretation: theory of the approximation of (program) semantics

Principle: be tractable by reasoning at an abstract level

concrete executions : {(0, 3), (5.5, 0), (12, 7), . . .} (not computable)
box domain : X ∈ [0, 12] ∧ Y ∈ [0, 8] (linear cost)
polyhedra domain : 6X + 11Y ≥ 33 ∧ · · · (exponential cost)

=⇒ various abstractions, trade-off cost vs. precision and expressiveness

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 5 / 37



Abstract Interpretation

Abstract computations

Define an interpretation of atomic statements in the abstract domain(s),
compose them to analyze the program

by propagation on the control-flow graph edges (à la data-flow)

or by induction on the syntax of programs (interpretation)

Example in the polyhedra domain
Assignment:
• X = X + 1 •
translation

Join:
if · · · then · · · • else · · · • fi •
convex hull

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 6 / 37



Abstract Interpretation

Loop invariants
Loops are difficult to analyze, due to large (unbounded) behaviors!
Principle: find an inductive invariant summarizing all loop iterates

true when first entering the loop
stable by a loop iteration (invariance proof by induction on loop iterations)

In abstract interpretation, we find an abstract inductive invariant
iterate the loop in the abstract
accelerate loop convergence to ensure analysis termination
=⇒ drop unstable constraints and bounds (widening O)

Simple loop

assume N in [0,1000];
I = 0;
while • (i < N)

I = I + 1;

Iterations with widening on polyhedra

to infer a precise box at the end of a loop (e.g., I ≤ 1000),
we may need to infer a relational loop invariant! (e.g., I ≤ N)

Widenings offer a general method to approximate fixpoints.
Useful for loops, recursive calls, cycles in the CFG, etc.

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 7 / 37



Abstract Interpretation

Loop invariants
Loops are difficult to analyze, due to large (unbounded) behaviors!
Principle: find an inductive invariant summarizing all loop iterates

true when first entering the loop
stable by a loop iteration (invariance proof by induction on loop iterations)

In abstract interpretation, we find an abstract inductive invariant
iterate the loop in the abstract
accelerate loop convergence to ensure analysis termination
=⇒ drop unstable constraints and bounds (widening O)

Simple loop

assume N in [0,1000];
I = 0;
while • (i < N)

I = I + 1;

Iterations with widening on polyhedra

to infer a precise box at the end of a loop (e.g., I ≤ 1000),
we may need to infer a relational loop invariant! (e.g., I ≤ N)

Widenings offer a general method to approximate fixpoints.
Useful for loops, recursive calls, cycles in the CFG, etc.

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 7 / 37



Abstract Interpretation

Soundness and false alarms

⇐=

S

P

A

P ⊆ S A ⊆ S
program proved

Goal : prove that a program P satisfies its specification S
We collect (an abstraction of) the reachable states P and compare to states S
A polyhedral abstraction A can prove the correctness

A box abstraction cannot prove the correctness =⇒ false alarm
The analaysis is sound: no false negative reported!

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 8 / 37



Abstract Interpretation

Soundness and false alarms

6⇐=

S

P

A

P ⊆ S A 6⊆ S
false alarm

Goal : prove that a program P satisfies its specification S
We collect (an abstraction of) the reachable states P and compare to states S
A polyhedral abstraction A can prove the correctness
A box abstraction cannot prove the correctness =⇒ false alarm

The analaysis is sound: no false negative reported!

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 8 / 37



Abstract Interpretation

Soundness and false alarms

S

P 6⇐=

S

P

A

P 6⊆ S A ⊆ S
false negative
cannot occur

Goal : prove that a program P satisfies its specification S
We collect (an abstraction of) the reachable states P and compare to states S
A polyhedral abstraction A can prove the correctness
A box abstraction cannot prove the correctness =⇒ false alarm
The analaysis is sound: no false negative reported!

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 8 / 37



The Astrée Analyzer

The Astrée Analyzer

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 9 / 37



The Astrée Analyzer

Example static analyzer: Astrée

checks for absence of run-time error
in embedded synchronous C code
prototype started at ENS in 2001
industrialized by AbsInt in 2009 www.absint.com

used in production e.g. at Airbus
LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 10 / 37



The Astrée Analyzer

Construction by refinement
Theoretical completeness:

for each program and property, an abstract domain exists
but the construction is generally not mechanizable
(except in limited cases: finite restrictions of infinite domains)

Practical approach used in Astrée
build a simple and fast analyzer (intervals)
iterate: refine by hand the analyzer until 0 false alarm:

determine which necessary properties are missed
add / refine an abstract domain to infer it
improve the widening O
improve the communications between domains

=⇒ analyzer specialized for a (infinite) class of programs
efficient and precise
parametric (by end-users, to analyze new programs in the family)

extensible (by developers, to analyze related families)

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 11 / 37



The Astrée Analyzer

Astrée results

Airbus A340-300 (2003) Airbus A380 (2004)

Success: on specific industrial applications
size: from 70 000 to 860 000 lines of embedded reactive C
analysis time: from 45mn to '40h
0 alarm: proof of absence of run-time error
=⇒ usable for software validation

Now available commercially through AbsInt (2009)
usable by industrial customers in the embedded world

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 12 / 37



The Astrée Analyzer

Specialisation example: Low-level memory abstraction

C union types

union {
struct { uint8 al,ah,bl,bh } b;
struct { uint16 ax,bx } w;

} r;
r.w.ax = 258;
if (r.b.al==2) r.b.al++;

C standard: ill-typed programs, undefined behavior

In practice:
there is no error
the semantics is well-defined (ABI specification)

=⇒ develop abstractions for overlapping memory cells
– creating cells dynamically, on-demand
– parameterized by (memory-unaware) numeric abstractions

also works for type-punning constructions, without any static type information

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 13 / 37



The Astrée Analyzer

Specialisation example: Low-level memory abstraction

C union types

union {
struct { uint8 al,ah,bl,bh } b;
struct { uint16 ax,bx } w;

} r;
r.w.ax = 258;
if (r.b.al==2) r.b.al++;

0 1 2
...

ax

258

al

2

C standard: ill-typed programs, undefined behavior

In practice:
there is no error
the semantics is well-defined (ABI specification)

=⇒ develop abstractions for overlapping memory cells
– creating cells dynamically, on-demand
– parameterized by (memory-unaware) numeric abstractions

also works for type-punning constructions, without any static type information

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 13 / 37



The Astrée Analyzer

Specialisation example: Domain-specific abstraction

Digital 2nd order filter

while (1) {
X = input();
P = 0.46*X - 0.77*E1 + 0.43*E2;
P = P + 1.54*S1 - 0.67*S2;
E2 = E1; E1 = X;
S2 = S1; S1 = P;

}

–100

–80

–60

–40

–20

0

20

40

60

80

100

y

–100 –80 –60 –40 –20 20 40 60 80 100
x

No box over (S1,S2) is an inductive invariant
=⇒ to infer variable bounds, we need strictly more expressive abstract domains

Ellipsoid domain: Y 2 − aXY − bX 2 ≤ c (Feret 2005)

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 14 / 37



The Astrée Analyzer

Composing abstractions

A few of the abstract domains used in Astrée

octagons congruences ellipsoids
±X ± Y ≤ c X ≡ a [b] digital filters

boolean decision trees exponentials trace partitions
X ≤ (1 + α)βt

Combine the strength of different abstractions!
LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 15 / 37



The AstréeA Analyzer

The AstréeA Analyzer

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 16 / 37



The AstréeA Analyzer

Example static analyzer: AstréeA
Extension of Astrée to embedded concurrent software
Concurrency model:

fixed number of threads
preemptive real-time scheduling on a single processor
shared memory, locks

Target application:
embedded avionic code
2 Mloc of C, 15 threads
reactive code + network code + lists, strings, pointers
many variables, large arrays, many loops, shallow call graph
no dynamic memory allocation, no recursivity
1100 alarms, in 30h analysis time

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 17 / 37



The AstréeA Analyzer

Non-thread modular analysis

Sequential analysis:
one abstract state per program point
one transfer function per instruction
various iteration schemes with widening

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 18 / 37



The AstréeA Analyzer

Non-thread modular analysis

× =

Natural extension to multi-thread: CFG product
control state = tuple of program points
=⇒ combinatorial explosion of abstract states
transfer functions are duplicated

Not practical for high scalability. . .
Beyond partial-order reduction: we need abstraction a priori

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 18 / 37



The AstréeA Analyzer

Thread-modular analysis

Thread-modular analysis:
analyze each thread separately
also analyze their interaction

=⇒ no product, more efficient!

Soundness : do we still cover all possible interleavings?

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 19 / 37



The AstréeA Analyzer

CFG-based vs. syntax-based

CFG-based:

{ X1 = >
X2 = F2(X1)
X3 = F3(X1)
X4 = F4(X3,X4)

Syntax-based:

i = 0;
while (i < nb)
{
    a[i] =12;
    i++;
}

J while c do b KX def= J¬c K (lfpλY .X ∪ J b K(J c KY ))
J if c then t KX def= J t K (J c KX) ∪ J¬c KX
. . .

linear memory in program length
flexible solving strategy
flexible context sensitivity
easy to adapt to concurrency,
both in thread-modular and CFG
product way

linear memory in program depth
fixed iteration strategy
fixed context sensitivity
(follows the program structure)

no practical induction definition of product
=⇒ thread-modular analysis

for scalability on large programs, memory is a limiting factor
⇒ we use an interpreter by induction on the syntax

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 20 / 37



The AstréeA Analyzer

CFG-based vs. syntax-based

CFG-based:

{ X1 = >
X2 = F2(X1)
X3 = F3(X1)
X4 = F4(X3,X4)

Syntax-based:

i = 0;
while (i < nb)
{
    a[i] =12;
    i++;
}

J while c do b KX def= J¬c K (lfpλY .X ∪ J b K(J c KY ))
J if c then t KX def= J t K (J c KX) ∪ J¬c KX
. . .

linear memory in program length
flexible solving strategy
flexible context sensitivity
easy to adapt to concurrency,
both in thread-modular and CFG
product way

linear memory in program depth
fixed iteration strategy
fixed context sensitivity
(follows the program structure)

no practical induction definition of product
=⇒ thread-modular analysis

for scalability on large programs, memory is a limiting factor
⇒ we use an interpreter by induction on the syntax

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 20 / 37



The AstréeA Analyzer

CFG-based vs. syntax-based

CFG-based:

{ X1 = >
X2 = F2(X1)
X3 = F3(X1)
X4 = F4(X3,X4)

Syntax-based:

i = 0;
while (i < nb)
{
    a[i] =12;
    i++;
}

J while c do b KX def= J¬c K (lfpλY .X ∪ J b K(J c KY ))
J if c then t KX def= J t K (J c KX) ∪ J¬c KX
. . .

linear memory in program length
flexible solving strategy
flexible context sensitivity
easy to adapt to concurrency,
both in thread-modular and CFG
product way

linear memory in program depth
fixed iteration strategy
fixed context sensitivity
(follows the program structure)

no practical induction definition of product
=⇒ thread-modular analysis

for scalability on large programs, memory is a limiting factor
⇒ we use an interpreter by induction on the syntax

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 20 / 37



The AstréeA Analyzer

CFG-based vs. syntax-based

CFG-based:

{ X1 = >
X2 = F2(X1)
X3 = F3(X1)
X4 = F4(X3,X4)

Syntax-based:

i = 0;
while (i < nb)
{
    a[i] =12;
    i++;
}

J while c do b KX def= J¬c K (lfpλY .X ∪ J b K(J c KY ))
J if c then t KX def= J t K (J c KX) ∪ J¬c KX
. . .

linear memory in program length
flexible solving strategy
flexible context sensitivity
easy to adapt to concurrency,
both in thread-modular and CFG
product way

linear memory in program depth
fixed iteration strategy
fixed context sensitivity
(follows the program structure)

no practical induction definition of product
=⇒ thread-modular analysis

for scalability on large programs, memory is a limiting factor
⇒ we use an interpreter by induction on the syntax

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 20 / 37



The AstréeA Analyzer

Thread-modular analysis with simple interferences

i = 0;
while (i < nb)
{
    a[i] --;
    i++;
}

i = 0;
while (i < nb)
{
    a[i] ++;
    i++;
}

Principle:
analyze each thread in isolation

gather the values written into each variable by each thread
=⇒ so-called interferences
suitably abstracted in an abstract domain, such as intervals

reanalyze threads, injecting these values at each read
iterate until stabilization while widening interferences

Benefits:
very similar to a sequential analysis (high reusability)

efficient
sound: takes all thread interleavings into account

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 21 / 37



The AstréeA Analyzer

Thread-modular analysis with simple interferences

i = 0;
while (i < nb)
{
    a[i] --;
    i++;
}

i = 0;
while (i < nb)
{
    a[i] ++;
    i++;
}

Principle:
analyze each thread in isolation
gather the values written into each variable by each thread
=⇒ so-called interferences
suitably abstracted in an abstract domain, such as intervals

reanalyze threads, injecting these values at each read
iterate until stabilization while widening interferences

Benefits:
very similar to a sequential analysis (high reusability)

efficient
sound: takes all thread interleavings into account

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 21 / 37



The AstréeA Analyzer

Thread-modular analysis with simple interferences

i = 0;
while (i < nb)
{
    a[i] --;
    i++;
}

i = 0;
while (i < nb)
{
    a[i] ++;
    i++;
}

Principle:
analyze each thread in isolation
gather the values written into each variable by each thread
=⇒ so-called interferences
suitably abstracted in an abstract domain, such as intervals

reanalyze threads, injecting these values at each read

iterate until stabilization while widening interferences

Benefits:
very similar to a sequential analysis (high reusability)

efficient
sound: takes all thread interleavings into account

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 21 / 37



The AstréeA Analyzer

Thread-modular analysis with simple interferences

i = 0;
while (i < nb)
{
    a[i] --;
    i++;
}

i = 0;
while (i < nb)
{
    a[i] ++;
    i++;
}

... ...

▽ ▽

Principle:
analyze each thread in isolation
gather the values written into each variable by each thread
=⇒ so-called interferences
suitably abstracted in an abstract domain, such as intervals

reanalyze threads, injecting these values at each read
iterate until stabilization while widening interferences

Benefits:
very similar to a sequential analysis (high reusability)

efficient
sound: takes all thread interleavings into account

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 21 / 37



The AstréeA Analyzer

Thread-modular analysis with simple interferences

i = 0;
while (i < nb)
{
    a[i] --;
    i++;
}

i = 0;
while (i < nb)
{
    a[i] ++;
    i++;
}

... ...

▽ ▽

Principle:
analyze each thread in isolation
gather the values written into each variable by each thread
=⇒ so-called interferences
suitably abstracted in an abstract domain, such as intervals

reanalyze threads, injecting these values at each read
iterate until stabilization while widening interferences

Benefits:
very similar to a sequential analysis (high reusability)

efficient
sound: takes all thread interleavings into account

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 21 / 37



The AstréeA Analyzer

Simple abstract interferences: Example
Simple interference analysis: with interval abstraction

t1

while random do
if x < y then

x ← x + 1
done

t2

while random do
if y < 100 then

y ← y + [1, 3]
done

iteration t1 t2

1 ∅ ∅
2 ∅ y 7→ [1, 102]
3 x 7→ [1, 102] y 7→ [1, 102] (stable)

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 22 / 37



The AstréeA Analyzer

Simple abstract interferences: Example
Simple interference analysis: with interval abstraction

t1

while random do
if x < y then

x ← x + 1
done

t2

while random do
if y < 100 then

y ← y + [1, 3]
done

iteration t1 t2

1 ∅ ∅

2 ∅ y 7→ [1, 102]
3 x 7→ [1, 102] y 7→ [1, 102] (stable)

Analysis as separate sequential processes, without interferences
=⇒ t2 writes [1, 102] into y

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 22 / 37



The AstréeA Analyzer

Simple abstract interferences: Example
Simple interference analysis: with interval abstraction

t1

while random do
if x < y then

x ← x + 1
done

t2

while random do
if y < 100 then

y ← y + [1, 3]
done

iteration t1 t2

1 ∅ ∅
2 ∅ y 7→ [1, 102]

3 x 7→ [1, 102] y 7→ [1, 102] (stable)

add the information that t2 writes [1, 102] into y ,
for t1 to use
=⇒ t1 now writes into x

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 22 / 37



The AstréeA Analyzer

Simple abstract interferences: Example
Simple interference analysis: with interval abstraction

t1

while random do
if x < y then

x ← x + 1
done

t2

while random do
if y < 100 then

y ← y + [1, 3]
done

iteration t1 t2

1 ∅ ∅
2 ∅ y 7→ [1, 102]
3 x 7→ [1, 102] y 7→ [1, 102] (stable)

t1 writes into x , but this is not visible by t2;
we reach a stable point
=⇒ program invariant: x , y ∈ [0, 102]

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 22 / 37



The AstréeA Analyzer

Limitation of simple interferences

t1

while random do
if x < y then

x ← x + 1
done

t2

while random do
if y < 100 then

y ← y + [1, 3]
done

the analysis finds x , y ∈ [0, 102]
but, in fact, 0 ≤ x ≤ y ≤ 102

Cause:
Transporting abstractions of sets of variable values is insufficient.
even if we transport the exact set instead of an interval abstraction, we lose precision!

Simple interferences perform a flow-insensitive, non-relational abstraction

⇒
we need to transport flow-sensitive relations
we will develop a new thread-modular concrete semantics with is complete

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 23 / 37



The AstréeA Analyzer

A thread-modular concrete semantics (1/3)

bThread

x = 0

while x<y

  x++;

/* bla bla */

a b b a

Intuition :
During the analysis of a single thread a :

in order to reconstruct whole program executions
it is sufficient to know the transitions the other threads b can apply
I(b)

=⇒
interleaving of the current thread and the environment (other threads)
we can then extract all the reachable states R(a)

R(x) ⊆ control ×memory
I(x) ⊆ (control ×memory)2

with auxiliary variables! (control and memory of all threads visible by every thread)
LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 24 / 37



The AstréeA Analyzer

A thread-modular concrete semantics (2/3)

a

a b b a

x = 0

while x<y

  x++;

/* bla bla */

Thread

Intuition :

During the analysis of a single thread :
when computing the reachable states R(a)
we can extract the effective state transitions I(a) it performs

=⇒ this information is required by the other threads. . .

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 25 / 37



The AstréeA Analyzer

A thread-modular concrete semantics (3/3)

Problem: mutually recursive equations
reachability R(a) depends on { I(x) | x 6= a }
interference I(a) depends on R(a)

Solution: fixpoint computed by iteration
start with ∀x : I(x) = ∅
compute a first approximation of R(x) by analyzing every thread x
deduce an approximation of I(x) for every x
analyze again each thread to get a more realistic R(x)
deduce an enriched I(x)
. . .
iterate until reaching a fixpoint (may be infinite. . . )

This uncomputable concrete semantic is complete
and in thread-modular form.

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 26 / 37



The AstréeA Analyzer

A thread-modular abstract semantics

Principle: Mimic the concrete computation
using a state abstract domain to approximate R(x)
using a relation abstract domain to approximate I(x)
iterate with widening on I(x)

=⇒ computable abstract semantics

Retrieving the simple interference abstraction :
R(x): forget the control information of all other threads y 6= x

abstract the memory in a numeric abstract domain
I(x):

forget all the control information (flow insensitivity)
remember only the image of the relation {w | ∃v : (v ,w) ∈ I(x) }
abstract the image in a non-relational domain (non-relationality)

We can do better by keeping some relationality and flow-sensitivity!

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 27 / 37



The AstréeA Analyzer

Application: Lock-partitioning of simple interferences

x ← 10;
...
x ← 20;
x ← 30;
...

x ← 100;
y ← x;
...
x ← 1+x;
y ← x;
...

x ← [10;30]

Without lock:
all writes into x on the right affect all reads from x on the left

interferences taken into account through expression injection
y ← x becomes y ← x ∪ [10; 30]
x ← 1 + x becomes x ← 1 + (x ∪ [10; 30])

and then use a regular transfer function
we detect the presence of data-races

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 28 / 37



The AstréeA Analyzer

Application: Lock-partitioning of simple interferences

x ← 10;
lock(m);
x ← 20;
x ← 30;
unlock(m);

x ← 100;
y ← x;
lock(m);
x ← 1+x;
y ← x;
unlock(m);

x ← [10;30]

x ← [10;10]

With locks:
partition interferences wrt. locks held
the first y ← x is still y ← x ∪ [10; 30]
the second y ← x is now y ← x ∪ [10; 10]
these interferences are caused by data-races

the last write to x before unlock
influences all reads from x between lock and update of x
=⇒ we transfer the values of x from unlock to lock instruction
these are well-synchronized interferences

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 28 / 37



The AstréeA Analyzer

Application: Lock-partitioning of simple interferences

x = 10;
lock(m);
x = 20;
x = 30;
unlock(m);

x ← 100;
y ← x;
lock(m);
x ← 1+x;
y ← x;
unlock(m);

x ← [10;30]

x ← [10;10]

x ← 30

With locks:
partition interferences wrt. locks held
the first y ← x is still y ← x ∪ [10; 30]
the second y ← x is now y ← x ∪ [10; 10]
these interferences are caused by data-races

the last write to x before unlock
influences all reads from x between lock and update of x
=⇒ we transfer the values of x from unlock to lock instruction
these are well-synchronized interferences

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 28 / 37



The AstréeA Analyzer

Application: Priority-based scheduling

yieldyield

yield

yield

priority

Real-time scheduling:
priorities are strict (but possibly dynamic)

a process can only be preempted by a process of strictly higher priority
a process can block for an indeterminate amount of time (yield, lock)

Analysis: refined transfer of interference based on priority
partition interferences wrt. thread and priority
support for manual priority change, and for priority ceiling protocol

higher priority processes inject state from yield into every point
lower priority processes inject data-race interferences into yield

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 29 / 37



The AstréeA Analyzer

Application: Relational lock invariants

y ← [1;100] ∧ x ≤ y

while (...) {
    lock(m)
    if (x < y) x++;
    unlock(m)
}

while (...) {
    lock(m)
    if (y < 100) y++;
    unlock(m)
}

x ← [1;100] ∧ x ≤ y

Idea: use (costly) relational interferences only at lock instructions
Rationale: locks often protect important, complex invariants

data-race interference unchanged (here, ∅, as there is no data-race)

well-synchronized interferences now carry:
a set of written values
a state property left invariant by the block
(intersection of state at lock and at unlock point)

we don’t keep input/output relation

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 30 / 37



The AstréeA Analyzer

Application: Monotonicity interference

while (...) {
    if (clock < 100)

clock++;
}

while (...) {
    x ← clock;
    delta ← x - old;
    old ← x;
}

clock ← [0,100]
clock increases

Idea: specialized domain to keep simple input/output relations
clock is only increased (i.e., monotonic)

easy to infer (check all assignments)
easy to represent (one flow-insensitive flag per variable)
easy to exploit: new value of clock - old value of clock ≥ 0

very common pattern in control-command software

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 31 / 37



The AstréeA Analyzer

Weak memory consistency

Multi-core CPU and optimizing compilers enforce weak memory consistency
=⇒ an analysis sound only for sequential consistency

may not be sound for the actual memory model!

Soundness argument: on a per abstraction basis
simple interferences: sound for reordering of independent R/W
(includes PSO, TSO, traditional compiler optimization)

monotonicity abstraction: sound for TSO & PSO
relational lock invariants: sound for DRF guarantee
if no data-race!
(includes C, C++, Java)

full relational interferences: sound for SC only

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 32 / 37



The AstréeA Analyzer

Application to AstréeA

monotonicity relational lock analysis time memory iterations alarms
domain invariants
× × 25h 26mn 22 GB 6 4616
X × 30h 30mn 24 GB 7 1100
X X 110h 38mn 90 GB 7 1009

We only integrated into AstréeA a part of the proposed abstractions
Still scalability concerns with relational lock invariants (packing needed)

Reminder: embedded ARINC 653 C application with 15 threads, 2 Mlines

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 33 / 37



Conclusion

Conclusion

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 34 / 37



Conclusion

Summary
We proposed a static analysis framework for concurrent programs:

sound for all interleavings
and in some cases weakly consistent memories

thread-modular
scalable, ability to reuse existing analyzers

parameterized by abstract domains
ability to reuse existing domains

constructed by abstraction of a complete method
enable refinement to arbitrary precision

presented several abstraction instances (relational, flow-sensitive)

Future work:
specialization of state and interference domains for AstréeA
bridge the gap between full relational and non-relational inteferences
bridge the gap between arbitrary preemption and sequentializable
flow-sensitive or even history-sensitive interference abstraction, e.g.: initialization

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 35 / 37



Conclusion

Perspectives: Open-source static analysis

Static analysis by abstract interpretation
has had some success in verification
is becoming more popular, especially in industry
but there are still some limits to its adoption;
tools do not offer at the same time:

generality
soundness

scalability
precision

MOPSA Project (2016–2021)
develop a new open-source platform for static analysis
sound, modular, extensible, multi-language, multi-abstraction
demonstrate on the analysis of important open-source software
(e.g., name servers)

provide a platform for research and collaboration
provide a usable tool and increase awareness for developers

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 36 / 37



Thank you

Thank you

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 37 / 37


	Introduction
	Abstract Interpretation
	The Astrée Analyzer
	The AstréeA Analyzer
	Conclusion
	Thank you

