Verification of Concurrent Embedded Software
by Abstract Interpretation

Antoine Miné

LIP6
University Pierre and Marie Curie
Paris, France

LaMHA/LTP Day
11 October 2017

[]
veme IEP

Introduction

Static analysis

Goal: program verification by static analysis

int search(int* t, int n) {
int search(int* t, int n) { int i;
int i; for (i=0; i<n; i++) {
for (i=0; i<n; i++) { e // 0<i<n
if (t[i]) break; if (t[i]) break;
return t[i]; // 0<i<nVvn<O0
3 return t[il;
v
o work directly on the source code
@ infer properties on program executions
o automatically (cost effective)
@ by constructing dynamically a semantic abstraction of the program
@ deduce program correctness or raise alarms
implicit specification: absence of RTE; or user-defined properties: contracts
@ with approximations (efficient, but possible false alarms)
] SOUﬂdly (no false positive)

We use the abstract interpretation theory.

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné

P

p.2/37

Introduction

Outline

More specifically:

@ focus on accessibility and numeric properties of program variables

@ with application to validation

proof of absence of arithmetic overflow, invalid operation, illegal memory access, etc.
@ on concurrent embedded programs
adding: scheduling, process priorities, proof of absence of data-race or deadlock
Outline:
@ Abstract interpretation primer
@ The Astrée analyzer for embedded synchronous C code
@ The AstréeA extension to embedded coucurrent C code

@ Future directions

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné

p.3/37

Abstract Interpretation

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software _ p.4/37

Abstract interpretation: theory of the approximation of (program) semantics

Principle: be tractable by reasoning at an abstract level

Abstract Interpretation

Abstract interpretation

Abstract interpretation: theory of the approximation of (program) semantics

Principle: be tractable by reasoning at an abstract level

X
X

X

concrete executions : {(0,3),(5.5,0),(12,7),...} (not computable)

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p.5/37

Abstract Interpretation

Abstract interpretation

Abstract interpretation: theory of the approximation of (program) semantics

Principle: be tractable by reasoning at an abstract level

concrete executions : {(0,3),(5.5,0),(12,7),...} (not computable)
box domain : X €[0,12]AY €0, 8] (linear cost)

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p.5/37

Abstract Interpretation

Abstract interpretation

Abstract interpretation: theory of the approximation of (program) semantics

Principle: be tractable by reasoning at an abstract level

concrete executions : {(0,3),(5.5,0),(12,7),...} (not computable)
box domain : X e [0, 12] ANY € [O, 8] (linear cost)
polyhedra domain : 6X +11Y >33A--- (exponential cost)

= various abstractions, trade-off cost vs. precision and expressiveness

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p.5/37

Abstract Interpretation

Abstract computations

Define an interpretation of atomic statements in the abstract domain(s),
compose them to analyze the program

@ by propagation on the control-flow graph edges (a Ia data-flow)

@ or by induction on the syntax of programs (interpretation)

Assignment:

eX =X+ 1e ’ —
translation

Join: = .
if ---then --.-eclse ---ofie

convex hull

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p.6 /37

Abstract Interpretation

Loop invariants

Loops are difficult to analyze, due to large (unbounded) behaviors!
Principle: find an inductive invariant summarizing all loop iterates
@ true when first entering the loop

@ stable by a Ioop iteration (invariance proof by induction on loop iterations)

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p.7/37

Abstract Interpretation

Loop invariants

Loops are difficult to analyze, due to large (unbounded) behaviors!
Principle: find an inductive invariant summarizing all loop iterates

@ true when first entering the loop

@ stable by a |oop iteration (invariance proof by induction on loop iterations)
In abstract interpretation, we find an abstract inductive invariant

@ iterate the loop in the abstract

@ accelerate loop convergence to ensure analysis termination
= drop unstable constraints and bounds (widening v)

Simple loop

assume N in [0,1000];
I=0;

. . E—
while @ (i < N)

I=1+1;

to infer a precise box at the end of a loop (e.g., I < 1000),
we may need to infer a relational loop invariant! (e.g., I < N)

Widenings offer a general method to approximate fixpoints.
Useful for loops, recursive calls, cycles in the CFG, etc.

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p.7/37

Abstract Interpretation

Soundness and false alarms

s
P —
PCS ACS
program proved
Goal : prove that a program P satisfies its specification S

We collect (an abstraction of) the reachable states P and compare to states S

A polyhedral abstraction A can prove the correctness

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p.8/37

Abstract Interpretation

Soundness and false alarms

PCS AZS

false alarm

Goal : prove that a program P satisfies its specification S
We collect (an abstraction of) the reachable states P and compare to states S

A polyhedral abstraction A can prove the correctness

A box abstraction cannot prove the correctness = false alarm

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p.8/37

Abstract Interpretation

Soundness and false alarms

PZS ACS
false negative
cannot occur

Goal : prove that a program P satisfies its specification S

We collect (an abstraction of) the reachable states P and compare to states S
A polyhedral abstraction A can prove the correctness

A box abstraction cannot prove the correctness = false alarm

The analaysis is sound: no false negative reported!

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p.8/37

The Astrée Analyzer

The Astrée Analyzer

Example static analyzer: Astrée

G AN L XEREE

@ checks for absence of run-time error
in embedded synchronous C code

@ prototype started at ENS in 2001 ﬁ
@ industrialized by Abslnt in 2009 www.absint.com
@ used in production e.g. at Airbus

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné

p. 10 /37

The Astrée Analyzer

Construction by refinement

Theoretical completeness:

o for each program and property, an abstract domain exists

@ but the construction is generally not mechanizable
(except in limited cases: finite restrictions of infinite domains)

Practical approach used in Astrée

@ build a simple and fast analyzer (intervals)

o iterate: refine by hand the analyzer until O false alarm:
determine which necessary properties are missed

add / refine an abstract domain to infer it

improve the widening Vv

]
]
]
e improve the communications between domains

= analyzer specialized for a (infinite) class of programs
o efficient and precise
("] parametric (by end-users, to analyze new programs in the family)
@ extensible (by developers, to analyze related families)

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 11 /37

The Astrée Analyzer

Astrée results

Airbus A340-300 (2003) Airbus A380 (2004)

Success: on specific industrial applications
@ size: from 70 000 to 860 000 lines of embedded reactive C
@ analysis time: from 45mn to ~40h

@ 0 alarm: proof of absence of run-time error
—> usable for software validation

@
Now available commercially through Abslnt “ (2009)

usable by industrial customers in the embedded world

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 12 /37

The Astrée Analyzer

Specialisation example: Low-level memory abstraction

union {
struct { uint8 al,ah,bl,bh } b;
struct { uint16 ax,bx } w;

}or

r.w.ax = 258;

if (r.b.al==2) r.b.al++;

C standard: ill-typed programs, undefined behavior

In practice:
@ there is no error

@ the semantics is well-defined (ABI specification)

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 13 /37

The Astrée Analyzer

Specialisation example: Low-level memory abstraction

}or
r.w.ax = 258;
if (r.b.al==2) r.b.al++;

S0
union {
struct { uint8 al,ah,bl,bh } b; :
struct { uint16 ax,bx } w; : £ :

C standard: ill-typed programs, undefined behavior
In practice:
@ there is no error

@ the semantics is well-defined (ABI specification)

— develop abstractions for overlapping memory cells
— creating cells dynamically, on-demand
— parameterized by (memory-unaware) numeric abstractions

also works for type-punning constructions, without any static type information

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 13 /37

The Astrée Analyzer

Specialisation example: Domain-specific abstraction

Digital 2nd order filter

while (1) {
X = input();
P = 0.46%X - 0.77*E1 + 0.43%E2;
P =P + 1.54%81 - 0.67%352;
E2 = E1; E1 = X;
S2 = S1; S1 = P;

No box over (S1,82) is an inductive invariant

= to infer variable bounds, we need strictly more expressive abstract domains

Ellipsoid domain: Y2 — aXY — bX? < ¢ (Feret 2005)

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 14 / 37

The Astrée Analyzer

Composing abstractions

®

octagons congruences ellipsoids
+X+Y<c X = alb] digital filters
boolean decision trees exponentials trace partitions
X<(1+a)

Combine the strength of different abstractions!

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 15 / 37

The AstréeA Analyzer

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software _ p. 16 / 37

The AstréeA Analyzer

Example static analyzer: AstréeA

Extension of Astrée to embedded concurrent software

Concurrency model:
o fixed number of threads
@ preemptive real-time scheduling on a single processor
@ shared memory, locks

Target application:
embedded avionic code
2 Mloc of C, 15 threads
reactive code + network code + lists, strings, pointers
many variables, large arrays, many loops, shallow call graph
no dynamic memory allocation, no recursivity

@ 1100 alarms, in 30h analysis time

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 17 / 37

The AstréeA Analyzer

Non-thread modular analysis

<>

Sequential analysis:

@ one abstract state per program point
@ one transfer function per instruction

@ various iteration schemes with widening

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné

p.18 /37

The AstréeA Analyzer

Non-thread modular analysis

C@] X SQ\ = 85\
8 8
/N N
8S—8 8—8
8

VAN !
8—8

Natural extension to multi-thread: CFG product

@ control state = tuple of program points
—> combinatorial explosion of abstract states

@ transfer functions are duplicated

Not practical for high scalability. . .
Beyond partial-order reduction: we need abstraction a priori

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 18 / 37

The AstréeA Analyzer

Thread-modular analysis

O A&

Thread-modular analysis:

@ analyze each thread separately
@ also analyze their interaction

= no product, more efficient!

Soundness : do we still cover all possible interleavings?

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 19 /37

CFG-based: Syntax-based:

i=0;
while (i < nb)

alil =12;
i++;

2 i;(xl) [while ¢ do b]X & [=c] (fpAY. X U[b]([c]Y))
§3:£35§1)X) [if cthen t]X & T[] ([cIX)U[-c]X
= F4(X3, Xa

The AstréeA Analyzer

CFG-based vs. syntax-based

CFG-based: Syntax-based:
% i=0;
while (i < nb)
{
9[i]f12;

% 2 i++;
X1=T) def
X = F2(X1) [while ¢ do b]])f1 F: [=c] (fpAY. XU[b]([c]Y))
X3 = F3(X1) [if cthent]X = [t] ([c]X)U[-c]X

Xy = F4(X3, Xs)

@ linear memory in program length

@ flexible solving strategy
flexible context sensitivity

@ easy to adapt to concurrency,
both in thread-modular and CFG
product way

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 20 / 37

The AstréeA Analyzer

CFG-based vs. syntax-based

CFG-based: Syntax-based:
@ i=0;
while (i < nb)
It
?[i] =12;
i++;
)
Xp=T . def
X = F2(X1) [while cdo b]X = [—c] (IfpAY. XU [b]([c]Y))
X3 = F3(X1) [if cthen t]X & T[] ([cIX)U[-c]X
Xy = F4(X3, X4) -
@ linear memory in program length @ linear memory in program depth
@ flexible solving strategy @ fixed iteration strategy
flexible context sensitivity fixed context sensitivity

(follows the program structure)
@ easy to adapt to concurrency, .
both in thread-modular and CEG @ no practical induction definition of product

product way = thread-modular analysis

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 20 / 37

The AstréeA Analyzer

CFG-based vs. syntax-based

CFG-based: Syntax-based:
while (1 < nt)
a[i];lZ;
2 i++;

Xp=T . def
X, = F2(X1) [while cdo b]X = [—c] (fpAY.XU[b]([c]Y))
X3 = F3(X1) [if cthen t]X & [¢] ([c]X)U[-c]X
Xy = F4(X3, X3) .
@ linear memory in program length @ linear memory in program depth
@ flexible solving strategy @ fixed iteration strategy
flexible context sensitivity fixed context sensitivity

(follows the program structure)
@ easy to adapt to concurrency,

both in thread-modular and CFG @ no practical induction definition of product
product way = thread-modular analysis

for scalability on large programs, memory is a limiting factor
= we use an interpreter by induction on the syntax

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 20 / 37

The AstréeA Analyzer

Thread-modular analysis with simple interferences

i=0;
while (i < nb)
{

i=0;
while (i < nb)
{
afi] - a[i] ++;
i++; i++;
} I

Principle:
@ analyze each thread in isolation

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné

p.21/37

The AstréeA Analyzer

Thread-modular analysis with simple interferences

i=0;
while (i < nb)
{

afi] -
IEE?

}

i=0;
while (i < nb)
{

a[i] ++;
i++;
}

e

Principle:

@ analyze each thread in isolation

@ gather the values written into each variable by each thread

— so-called interferences

suitably abstracted in an abstract domain, such as intervals

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné

p.21/37

The AstréeA Analyzer

Thread-modular analysis with simple interferences

0;

0; i=
while (i < nb)
{

i=
while (i < nb)
{

afi] ++;
i++;

afil -
i++;

} }

Principle:
@ analyze each thread in isolation
@ gather the values written into each variable by each thread

= so-called interferences
suitably abstracted in an abstract domain, such as intervals

@ reanalyze threads, injecting these values at each read

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné

p.21/37

The AstréeA Analyzer

Thread-modular analysis with simple interferences

i=0; i=0;

while (i < nb) while (i < nb)
{ {

alil -
i++;

ali] ++;
i++;

I }

Principle:
@ analyze each thread in isolation

@ gather the values written into each variable by each thread
= so-called interferences

suitably abstracted in an abstract domain, such as intervals
@ reanalyze threads, injecting these values at each read
@ iterate until stabilization while widening interferences

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné

p.21/37

The AstréeA Analyzer

Thread-modular analysis with simple interferences

i=0; i=0;

while (i < nb) while (i < nb)
{ {

alil -
i++;

ali] ++;
i++;

I }

Principle:
@ analyze each thread in isolation

@ gather the values written into each variable by each thread
= so-called interferences

suitably abstracted in an abstract domain, such as intervals
@ reanalyze threads, injecting these values at each read
@ iterate until stabilization while widening interferences
Benefits:
@ very similar to a sequential analysis (high reusability)
o efficient
@ sound: takes all thread interleavings into account

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné

p.21/37

The AstréeA Analyzer

Simple abstract interferences: Example

Simple interference analysis: with interval abstraction

t1 t2
while random do while random do
if x < y then if y < 100 then
x4+ x+1 y < y+I[1,3]
done done

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné

p.22 /37

The AstréeA Analyzer

Simple abstract interferences: Example

Simple interference analysis: with interval abstraction

t1 t2
while random do while random do
if x < y then if y < 100 then
x4+ x+1 y < y+I[1,3]
done done
iteration ‘ t1 ‘ to
1 0 \ 0

Analysis as separate sequential processes, without interferences
= t writes [1,102] into y

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné

p.22/37

The AstréeA Analyzer

Simple abstract interferences: Example

Simple interference analysis: with interval abstraction

t1 t2
while random do while random do
if x < y then if y < 100 then
x4+ x+1 y < y+I[1,3]
done done
iteration ‘ t1 ‘ to
1 0 0
2 0 y — [1,102]

add the information that t, writes [1,102] into y,
for t; to use

— t; now writes into x

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p.22 /37

The AstréeA Analyzer

Simple abstract interferences: Example

Simple interference analysis: with interval abstraction

t1 t2
while random do while random do
if x < y then if y < 100 then
x4+ x+1 y < y+I[1,3]
done done
iteration ‘ t1 to
1 0 0
2 0 y — [1,102]
3 x — [1,102] | y ~ [1,102] (stable)

t; writes into x, but this is not visible by ty;
we reach a stable point

= program invariant: x,y € [0,102]

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p.22 /37

The AstréeA Analyzer

Limitation of simple interferences

t1 ta
while random do while random do
if x < y then if y < 100 then
x—x+1 y < y+11,3
done done

@ the analysis finds x,y € [0, 102]
@ but, infact, 0 < x <y <102

Cause:

Transporting abstractions of sets of variable values is insufficient.
even if we transport the exact set instead of an interval abstraction, we lose precision!

Simple interferences perform a flow-insensitive, non-relational abstraction
=

we need to transport flow-sensitive relations
we will develop a new thread-modular concrete semantics with is complete

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 23 /37

The AstréeA Analyzer

A thread-modular concrete semantics (1/3)

v

Thread

x=0

while x<y
Xt

* bla bla *

Intuition :

During the analysis of a single thread a :
@ in order to reconstruct whole program executions
@ it is sufficient to know the transitions the other threads b can apply

I(b)
=
interleaving of the current thread and the environment (other threads)
we can then extract all the reachable states R(a)

@ R(x) C control x memory

@ /(x) C (control x memory)?
@ with auxiliary variables! (control and memory of all threads visible by every thread)

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné

p. 24 /37

The AstréeA Analyzer

A thread-modular concrete semantics (2/3)

a
[] @ ® —© [
,,,,,, o)
1
Thread
a

x=0
whilex<y b__________
X4+ p =
* bla bla *

Intuition :

During the analysis of a single thread :
@ when computing the reachable states R(a)

@ we can extract the effective state transitions /(a) it performs

= this information is required by the other threads. ..

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 25 /37

The AstréeA Analyzer

A thread-modular concrete semantics (3/3)

Problem: mutually recursive equations

reachability R(a) depends on {/(x) | x # a}
interference /(a) depends on R(a)

Solution: fixpoint computed by iteration

start with Vx : I(x) =

compute a first approximation of R(x) by analyzing every thread x
deduce an approximation of /(x) for every x

analyze again each thread to get a more realistic R(x)

deduce an enriched /(x)

iterate until reaching a fixpoint (may be infinite. ..)

This uncomputable concrete semantic is complete
and in thread-modular form.

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné

p. 26 /37

The AstréeA Analyzer

A thread-modular abstract semantics

Principle: Mimic the concrete computation
@ using a state abstract domain to approximate R(x)
@ using a relation abstract domain to approximate /(x)
e iterate with widening on /(x)

—> computable abstract semantics

Retrieving the simple interference abstraction :

@ R(x): forget the control information of all other threads y # x
abstract the memory in a numeric abstract domain
o /(x):
forget all the control information (flow insensitivity)
remember only the image of the relation {w|3v: (v,w) € I(x)}
abstract the image in a non-relational domain (non-relationality)

We can do better by keeping some relationality and flow-sensitivity!

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné

p. 27 /37

The AstréeA Analyzer

Application: Lock-partitioning of simple interferences

X « 100; X « [10;30]—X « 10;
y < X; <

——eXx « 20;
X « 1+x;, ¢— L ex « 30;
y « X; «—

Without lock:

@ all writes into x on the right affect all reads from x on the left

@ interferences taken into account through expression injection

y X becomes y < x U [10;30]
x <+ 1+x becomes x < 1+ (xU][10;30])

and then use a regular transfer function

@ we detect the presence of data-races

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 28 /37

The AstréeA Analyzer

Application: Lock-partitioning of simple interferences

X « 100; X « 10;
y « X; < lock(m);
lock(m); X « 20;

X & 1+x;<—| X « 30;
Yy € X <

unlock(m);
unlock(m); X < [10;10]

With locks:

@ partition interferences wrt. locks held

o the first y < x is still y < xU[10;30]
the second y <~ x isnow y < x U[10;10]

these interferences are caused by data-races

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 28 /37

The AstréeA Analyzer

Application: Lock-partitioning of simple interferences

X « 100; *x = 10;
Yy« X; « lock(m);
lock(m); X = 20;
X & 1+x; 4 x = 30;
yex, &——— unlock(m);
unlock(m);

X « 30

With locks:

@ partition interferences wrt. locks held

o the first y < x is still y < xU[10;30]
the second y <~ x isnow y < x U[10;10]

these interferences are caused by data-races
@ the last write to x before unlock

influences all reads from x between lock and update of x
— we transfer the values of x from unlock to lock instruction

these are well-synchronized interferences

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 28 /37

The AstréeA Analyzer

Application: Priority-based scheduling

priority
A yield yield

yield

Real-time scheduling:

@ priorities are strict (but possibly dynamic)
@ a process can only be preempted by a process of strictly higher priority
@ a process can block for an indeterminate amount of time (yield, lock)

Analysis: refined transfer of interference based on priority
@ partition interferences wrt. thread and priority

support for manual priority change, and for priority ceiling protocol
@ higher priority processes inject state from yield into every point
@ lower priority processes inject data-race interferences into yield

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p.29 /37

The AstréeA Analyzer

Application: Relational lock invariants

hile (... while (...) {

> ||oec|£(m)){ lock(m)
if (x <y)x++; if (y <100) y++;
unlock(m)) unlock(m)

} >

y«<[1;,100]Ax =<y

X «[1;,100]Ax <y

Idea: use (costly) relational interferences only at lock instructions

Rationale: locks often protect important, complex invariants

@ data-race interference unchanged (here, 0, as there is no data-race)
@ well-synchronized interferences now carry:
o a set of written values

o a state property left invariant by the block
(intersection of state at lock and at unlock point)

we don't keep input/output relation

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p. 30 /37

The AstréeA Analyzer

Application: Monotonicity interference

=

while (...) {
if (clock < 100)
clock++;
}

Idea: specialized domain to keep simple input/output relations

clock « [0,100]
clock increases

@ clock is only increased (i.e., monotonic)

o easy to infer (check all assignments)
@ easy to represent (one flow-insensitive flag per variable)

o easy to exploit: new value of clock - old value of clock > 0

very common pattern in control-command software

LaMHA/LTP Day 2017

Verification of Concurrent Embedded Software

while (...) {
I X « clock;
delta « x - old;
old « x;

}

Antoine Miné

p.31/37

The AstréeA Analyzer

Weak memory consistency

Multi-core CPU and optimizing compilers enforce weak memory consistency

== an analysis sound only for sequential consistency
may not be sound for the actual memory model!

Soundness argument: on a per abstraction basis

@ simple interferences: sound for reordering of independent R/W
(includes PSO, TSO, traditional compiler optimization)

@ monotonicity abstraction: sound for TSO & PSO

@ relational lock invariants: sound for DRF guarantee
if no data-race!
(includes C, C++, Java)

@ full relational interferences: sound for SC only

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné

p.32/37

The AstréeA Analyzer

Application to AstréeA

monotonicity | relational lock | analysis time | memory | iterations | alarms
domain invariants

X X 25h 26mn 22 GB 6 4616

v X 30h 30mn 24 GB 7 1100

v v 110h 38mn 90 GB 7 1009

We only integrated into AstréeA a part of the proposed abstractions

Still scalability concerns with relational lock invariants (packing needed)

Reminder: embedded ARINC 653 C application with 15 threads, 2 Mlines

LaMHA/LTP Day 2017

Verification of Concurrent Embedded Software

Antoine Miné

p.33/37

Conclusion

Conclusion

Summary

We proposed a static analysis framework for concurrent programs:

@ sound for all interleavings

and in some cases weakly consistent memories

@ thread-modular

scalable, ability to reuse existing analyzers

@ parameterized by abstract domains

ability to reuse existing domains

@ constructed by abstraction of a complete method

enable refinement to arbitrary precision

@ presented several abstraction instances (relational, flow-sensitive)

Future work:
@ specialization of state and interference domains for AstréeA
@ bridge the gap between full relational and non-relational inteferences

@ bridge the gap between arbitrary preemption and sequentializable

flow-sensitive or even history-sensitive interference abstraction, e.g.: initialization

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné p.35/37

Conclusion

Perspectives: Open-source static analysis

Static analysis by abstract interpretation
@ has had some success in verification
@ is becoming more popular, especially in industry
@ but there are still some limits to its adoption;
tools do not offer at the same time:

e generality o scalability

e soundness @ precision

MOPSA Project (2016-2021)
@ develop a new open-source platform for static analysis
@ sound, modular, extensible, multi-language, multi-abstraction

@ demonstrate on the analysis of important open-source software
(e.g., name servers)

@ provide a platform for research and collaboration

@ provide a usable tool and increase awareness for developers

LaMHA/LTP Day 2017 Verification of Concurrent Embedded Software Antoine Miné

p.36 /37

Thank you

	Introduction
	Abstract Interpretation
	The Astrée Analyzer
	The AstréeA Analyzer
	Conclusion
	Thank you

