
1/21

Automatic Cost Analysis
for Imperative BSP programs

Arvid Jakobsson

HLPP 2017, Valladolid, Spain

Huawei Research France University of Orleans



2/21

Bulk Synchronous Parallel (1)
I Bulk Synchronous Parallel (BSP): simple but powerful model for

�semi-synchronous� data-parallelism

I BSP computer: (1) �xed number p of processor-memory pairs, (2)
pair-wise communication network, (3) global synchronization unit

I BSP computation: Sequence of super-steps
I Super-step is composed of:

1. Local computation by each process,
2. Communication between processes,
3. Synchronization barrier.

proc0/mem0

proc1/mem1

proc2/mem2

proc3/mem3

Sync Barrier

Local computation Communications Next superstep

Figure: A BSP computer executing a superstep



3/21

Bulk Synchronous Parallel (2)

I Many implementations: BSPlib, BSML, BSP-Python, most linear
algebra packages. . .

I DSLs such as Pregel and MapReduce are BSP-like

I Bene�ts of BSP:
I Deadlock and data race free
I Simpli�es algorithm design
I Simple but realistic cost model
⇒ Scalable and Predictable performance in a portable and possibly
immortal way

I Goal of this work:
⇒ Automatic, Scalable and Predictable performance



3/21

Bulk Synchronous Parallel (2)

I Many implementations: BSPlib, BSML, BSP-Python, most linear
algebra packages. . .

I DSLs such as Pregel and MapReduce are BSP-like

I Bene�ts of BSP:
I Deadlock and data race free
I Simpli�es algorithm design
I Simple but realistic cost model
⇒ Scalable and Predictable performance in a portable and possibly
immortal way

I Goal of this work:
⇒ Automatic, Scalable and Predictable performance



4/21

BSP Cost model: BSP computer characterization

I BSP cost model: parallel architecture characterized by 4 parameters:

I p: number processing units
I r : cost of local computation
I g : cost of communicating a 1-relation
I l : cost of one barrier synchronization

proc0/mem0

proc1/mem1

proc2/mem2

proc3/mem3

Sync
l

r

r

r

r

g p Barrier

Local computation Communications Next superstep

Figure: BSP computer characterization



5/21

BSP Cost model: Cost of BSP algorithms
I Cost of BSP computation: sum of cost of each super-step
I Cost of super-step:

Wr + Hg + l

I W : Longest local computation
I H: Maximum number of words received/sent by any process

proc0/mem0

proc1/mem1

proc2/mem2

proc3/mem3

Sync
l

r

r

r

r

g p

W

Barrier

l

H

Local computation Communications

I Cost of BSP algorithm: worst-case BSP computation cost expressed
in algorithm's input variables



6/21

BSP Cost model: Example

I Example: Scan-algorithm for computing parallel pre�x of the
p-vector x (one component per process)

I BSPlib-like, SPMD language

I Bu�ered DRMA communication: get



6/21

BSP Cost model: Example

I Example: Scan-algorithm for computing parallel pre�x of the
p-vector x (one component per process)

I Instruction's local computation costs is determined uniquely by
annotation: {e ∗ r} i

I In this example: only assignment on line 8 is counted



6/21

BSP Cost model: Example

I Example: Scan-algorithm for computing parallel pre�x of the
p-vector x (one component per process)

I Execution with p = 4

I Cost of this execution:

(0r + 1g + 1l) + (1r + 1g + 1l) + (1r + 0g + 1l) = 2r + 2g + 3l



6/21

BSP Cost model: Example

I Example: Scan-algorithm for computing parallel pre�x of the
p-vector x (one component per process)

I Cost of Scan-algorithm: (log p)r + (log p)g + (log p + 1)l

I Predictable performance on any BSP computer



6/21

BSP Cost model: Example

I Example: Scan-algorithm for computing parallel pre�x of the
p-vector x (one component per process)

I Goal: Automatically obtain cost of imperative BSP programs



7/21

Automatic Cost Analysis: motivation

Downsides to manual cost analysis

I Tedious and error-prone

I Not always feasible / desirable:
I On the �y scheduling,
I Untrusted code,
I Prototyping, etc.



8/21

Idea: re-use existing cost analysis for sequential program

I Automatic cost analyses exist for sequential programs:
I Annotations give cost of individual instructions
I Annotations can include cost for di�erent resources: Example:

{1 ∗ i + 1 ∗ f } x := (1+ 2)/2.0

Interpretation: Cost is one integer and one �oating-point operation.
I Give the worst-case execution cost of input program
I Conservative: results are upper-bounds

I Idea: transform the BSPlib program to program whose sequential

costs upper-bounds the parallel cost and use sequential cost analysis

Imperative BSP program Transformation Sequential Cost Analysis BSP Cost



8/21

Idea: re-use existing cost analysis for sequential program

I Automatic cost analyses exist for sequential programs:
I Annotations give cost of individual instructions
I Annotations can include cost for di�erent resources: Example:

{1 ∗ i + 1 ∗ f } x := (1+ 2)/2.0

Interpretation: Cost is one integer and one �oating-point operation.
I Give the worst-case execution cost of input program
I Conservative: results are upper-bounds

I Idea: transform the BSPlib program to program whose sequential

costs upper-bounds the parallel cost and use sequential cost analysis

Imperative BSP program Transformation Sequential Cost Analysis BSP Cost



9/21

Challenge 1: Unrestricted divergence of control-�ow

I Challenge 1: The longest time path of the BSP computation might
not correspond to any sequential path

if pid = 0 then
{1 ∗ r} Work1(); sync ; {2 ∗ r} Work2();

else
{2 ∗ r} Work2(); sync ; {1 ∗ r} Work1();

end if

proc0

mem0

proc1

mem1

1

2

2

1

(a) BSP Execution

pid = 0

pid 6= 0

(b) Control Flow Graph



9/21

Challenge 1: Unrestricted divergence of control-�ow

I Challenge 1: The longest time path of the BSP computation might
not correspond to any sequential path

if pid = 0 then
{1 ∗ r} Work1(); sync ; {2 ∗ r} Work2();

else
{2 ∗ r} Work2(); sync ; {1 ∗ r} Work1();

end if

proc0

mem0

proc1

mem1

1

2

2

1

(a) BSP Execution

pid = 0

pid 6= 0

(b) Control Flow Graph



10/21

Solution 1: Requiring textually aligned programs

I Solution 1: Requiring textually aligned barriers

I When processes call sync in textually aligned program:
I same call-site
I same loop-iteration



10/21

Solution 1: Requiring textually aligned programs

I Solution 1: Requiring textually aligned barriers

I When processes call sync in textually aligned program:
I same call-site
I same loop-iteration

I Veri�ed using static analysis (see [JDB+17])

I BSPlib (and MPI) programs are mostly written in this way [JDB+17]
([ZD07])



10/21

Solution 1: Requiring textually aligned programs

I Solution 1: Requiring textually aligned barriers

I When processes call sync in textually aligned program:
I same call-site
I same loop-iteration

if pid = 0 then {1 ∗ r} Work1(); else {2 ∗ r} Work2(); end if
sync;
if pid = 0 then {2 ∗ r} Work2(); else {1 ∗ r} Work1(); end if

proc0

mem0

proc1

mem1

1

2

2

1

pid = 0 pid = 0

pid 6= 0 pid 6= 0



11/21

Challenge 2: Sequential vs. Parallel Longest Time Path

I Challenge 2: Longest time path of BSP computation might not be
feasible

if pid = 0 then {1 ∗ r} Work1(); else {2 ∗ r} Work2(); end if
sync;
if pid = 0 then {2 ∗ r} Work2(); else {1 ∗ r} Work1(); end if

I Here: pid would evaluate to di�erent values in 1st and 2nd guard

proc0

mem0

proc1

mem1

1

2

2

1



12/21

Solution 2: Non-deterministic scheduling

I Solution 2: Non-deterministic scheduling

I Instrument program to non-deterministically change state to any
process before each super-step



12/21

Solution 2: Non-deterministic scheduling

I Solution 2: Non-deterministic scheduling

I Instrument program to non-deterministically change state to any
process before each super-step

pid := any;
if pid = 0 then {1 ∗ r} Work1(); else {2 ∗ r} Work2(); end if
sync; pid := any;
if pid = 0 then {2 ∗ r} Work2(); else {1 ∗ r} Work1(); end if



12/21

Solution 2: Non-deterministic scheduling

I Solution 2: Non-deterministic scheduling

I Instrument program to non-deterministically change state to any
process before each super-step

pid := any;
if pid = 0 then {1 ∗ r} Work1(); else {2 ∗ r} Work2(); end if
sync; pid := any;
if pid = 0 then {2 ∗ r} Work2(); else {1 ∗ r} Work1(); end if

I Updates all variables with di�erent values in two processes (e.g. pid)

I These variables are statically over-approximated



12/21

Solution 2: Non-deterministic scheduling

I Solution 2: Non-deterministic scheduling

I Instrument program to non-deterministically change state to any
process before each super-step

I Longest time path feasible in instrumented program



13/21

Challenge 3: Communication distribution

I Challenge 3: Analyzing communication distribution

I BSP communication cost: ?

I Depends on how target expression pid − i evaluates in all processes



13/21

Challenge 3: Communication distribution

I Example:
get(pid − i , x , xin)

I Target expression pid − i has same value in all processes, e.g.
i = pid and so pid − i = 0.

proc0/mem0

proc1/mem1

...

procp−1/memp−1

I BSP communication cost: pg

I Potential annotation: {p ∗ g}



13/21

Challenge 3: Communication distribution

I Example:
get(pid − i , x , xin)

I Target expression pid − i has distinct value on all processes, e.g.
i = 1

proc0/mem0

proc1/mem1

...

procp−1/memp−1

I BSP communication cost: 1g

I Potential annotation: {1 ∗ g}



13/21

Challenge 3: Communication distribution

I Conclusion: must conservatively assume unbalanced communication
or analyze the target expression more precisely



14/21

Solution 3: Polyhedral model & Communicating section

I Precise reasoning on communication by polyhedral model

I Polyhedral model: executions of statement S as set of points

for i ∈ [0..3] do
for j ∈ [0..i ] do

S : ...
end for

end for

D = {[i , j ] ∈ Z2 | 0 ≤ i ≤ 3 ∧
0 ≤ j ≤ i}

I Bounds on loop-iterators i must be a�ne combinations of outer
iterators, e.g. i ≤ aj + bk + · · ·+ c .



14/21

Solution 3: Polyhedral model & Communicating section

I Requirements:
I textually aligned communicating section
I replicated parameters
I a�ne target expression

I Add two axes to polyhedra:
I pids ∈ [0..p) (source process) and
I pidt = target expression (target process)

I Obtain the interaction set



14/21

Solution 3: Polyhedral model & Communicating section

if pid ≥ i then
get(pid − i , x , xin)

end if

D = {[pids , pidt ] ∈ Z2 | 0 ≤ pids < p ∧
pidt = pids − i ∧
pids ≥ i}



15/21

Solution 3: From interaction set to H-relation

I How to go from interaction set to H-relation?

I Partition set twice: outbound & inbound requests per pid:

I H-relation = largest part. For this example, H-relation = 1

I E�ciently computed by polyhedral libraries



16/21

Solution 3: Insert bound in program

I Transformation annotates entry of
communicating section with
H-relation

I H-relation annotation

I Communicating section

I Non-deterministic scheduling



17/21

Send program to sequential cost analysis

I Last step: send the instrumented program with communication
bounds to the sequential cost analysis

I Result: upper-bound on BSP cost, parametric in input-variables

BSP program

Scan-program

Instrumentation +

Communication

analysis

Sequential

cost analysis

BSP cost formula

(log p)r + (log p)g +(log p + 1)l

Figure: Analysis pipeline



18/21

Implementation

I Prototype in Haskell: 3000 lines (includes sequential cost analysis)
I APRON (Numerical abstract domain library) [JM09] for abstract

interpretation
I PUBS (Practical upper-bounds solver) [AAGP11] for cost equation

solving
I Simple pattern matching for extracting polyhedra
I isl [Ver10] (Integer Set Library) for operations on polyhedra



19/21

Evaluation & Limitations

Program Result
Scan N = p (log p)r +(log p)g +(log p + 1)l
Scan N > p (2N/p + p − 2)r +(p − 1)g +2l
Compress (3N/p + p − 2)r +Ng +3l
Broadcast N > p (1) (p − 1)Ng +2l
Broadcast N > p (2) (log p)Ng +(log p + 1)l
Broadcast N > p (3) 2(p − 1)N/pg +3l
Fold (N/p + p − 2)r +pg +2l

I Evaluated method on BSP communication patterns from text-book

I Precise cost for all but Compress: data-dependent communication
pattern

I When control-�ow and communication pattern is not
data-dependent: works well



20/21

Future work & Conclusion

Contributions

I Method and prototype for analyzing cost of imperative BSP program

I Evaluation on small programs with promising results

Future work

I Implementation and experiment on larger programs

I Prove correctness of transformation

I Handling data-dependent control �ow

I Consider other measures on BSP costs: best-case, average-case, etc.



21/21

References

Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla, Closed-form
upper bounds in static cost analysis, Journal of Automated Reasoning 46 (2011),
no. 2, 161�203.

Arvid Jakobsson, Frederic Dabrowski, Wadoud Bousdira, Frédéric Loulergue, and
Gaetan Hains, Replicated Synchronization for Imperative BSP Programs,
International Conference on Computational Science (ICCS) (Zürich,
Switzerland), Procedia Computer Science, Elsevier., 2017.

Bertrand Jeannet and Antoine Miné, Apron: A library of numerical abstract

domains for static analysis, International Conference on Computer Aided
Veri�cation, Springer, 2009, pp. 661�667.

Sven Verdoolaege, Isl: An integer set library for the polyhedral model,
International Congress on Mathematical Software, Springer, 2010, pp. 299�302.

Yuan Zhang and Evelyn Duesterwald, Barrier Matching for Programs with

Textually Unaligned Barriers, Proceedings of the 12th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (New York, NY,
USA), PPoPP '07, ACM, 2007, pp. 194�204.


	BSP & The BSP Cost model
	Automatic Cost Analysis of Imperative BSP programs
	Implementation & Evaluation
	Conclusion

