
Security Level: 

Active objects for BSP 

(Work In Progress)

Parallel And Distributed 

Algorithms Lab

11 / 10 / 2017

SCALE team

Pierre Leca



2

Context

1st year industrial PhD as French CIFRE contract between Huawei and I3S

Company supervisors : Gaetan Hains and Wijnand Suijlen

University supervisors : Ludovic Henrio and Eric Madelaine

Early work on mixing BSP with active objects



3

Content

 Active objects

 Bulk Synchronous Parallel

 BSP active objects

 Future work ideas



4

Content

 Active objects

 Bulk Synchronous Parallel

 BSP active objects

 Future work ideas



5

Active objects

Represent asynchronous entities living in their own thread

Object function call syntax for sending requests

Result represented as future returned immediately

Blocking access to future only when required (wait by necessity)

Active object A

bar
foo()

fut = B.bar(1)

bar(1)
foo Active 

object B

Memory

fut.get() resultresult



6

Active objects

SOA vision

Suited for task-parallel algorithms

One request served at a time

Partially deterministic execution

Active object A

bar
foo()

fut = B.bar(1)

bar(1)
foo Active 

object B

Memory

fut.get() resultresult



7

Content

 Active objects

 Bulk Synchronous Parallel

 BSP active objects

 Future work ideas



8

Bulk Synchronous Parallel

Parallel execution model

A program is a sequence of supersteps

Computation → communication → synchronization

Synchronization ensure alignment of supersteps

Comp 0

Comp 1

Comp 2

Comp 3

Superstep



9

Bulk Synchronous Parallel

HPC vision

Deterministic execution

Easy to avoid deadlocks

Has a simple cost model

Suited for balanced data-parallel algorithms

Superstep
Comp 0

Comp 1

Comp 2

Comp 3



10

Content

 Active objects

 Bulk Synchronous Parallel

 BSP active objects

 Future work ideas



11

BSP active objects : coordination

Active object model is a good match for task-parallelism

BSP is a good match for data-parallelism

Both are not adequate for the other kind of parallelism

Both have interesting properties

Our idea is to combine them into a single execution model



12

BSP active objects : execution model

Multiple processes per active object

Requests handled sequentially by one head process

The head process can use other processes in BSP mode

BSP mode can be used for processing data-parallel parts



13

BSP active objects : execution model

Process A.0

bar
foo()

bsp_run(bar)

foo

Memory

Process A.1

foo

Memory

result

(1)
(2)

(3)

(4)

(5)

(4)

bar

BSP communications

Active object A



14

vector <int> foo (const vector <int> & v, int d)

{

int blocksize = v.size() / bsp_nprocs();

for (int i = 0; i < bsp_nprocs(); ++i)

{

bsp_send(i, &blocksize, sizeof(int));

bsp_send(i, &v[i * blocksize], blocksize * sizeof(int));

bsp_send(i, &d, sizeof(int));

}

bsp_run(bar);

vector <int> res(v.size());

for (int i = 0; i < bsp_nprocs(); ++i)

{

bsp_recv(i, &res[i * blocksize], blocksize * sizeof(int));

}

return res;

}

BSP active objects : example

void bar()

{

bsp_sync();

int blocksize, d;

bsp_recv(0, &blocksize, sizeof(int));

int v[blocksize];

bsp_recv(0, v, blocksize * sizeof(int));

bsp_recv(0, &d, sizeof(int));

for (int i = 0; i < blocksize; ++i)

{

v[i] += d;

}

bsp_send(0, v, blocksize * sizeof(int));

bsp_sync();

}



15

BSP active objects : pros

Programming sequentially by default is easy

Possible to express multi-parallelism algorithms

Task and Data parallel with deterministic properties

Implemented algorithms are easy to reuse



16

BSP active objects : cons

Active objects always communicate results

Distributed data are always aggregated to a single process

May be too complex for straightforward data parallelism



17

BSP active objects : implementation choices

Combine into a single language : C++

Build on top of MPI

Active objects use existing processes (vs dynamic creation)



18

Content

 Active objects

 Bulk Synchronous Parallel

 BSP active objects

 Future work ideas



19

Future work ideas

Combine distributed vectors and 

lazy future update strategy

Generic communication primitives 

between subsets

Process sharing



20

Future work ideas

Formalization

Study of cost model



Copyright©2016 Huawei Technologies Co., Ltd. All Rights Reserved.

The information in this document may contain predictive statements including, without 

limitation, statements regarding the future financial and operating results, future product 

portfolio, new technology, etc. There are a number of factors that could cause actual 

results and developments to differ materially from those expressed or implied in the 

predictive statements. Therefore, such information is provided for reference purpose 

only and constitutes neither an offer nor an acceptance. Huawei may change the 

information at any time without notice. 

Thank You.


