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Outline

Critical, Real-Time and Many-Core
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Time-critical, compute intensive applications

o Hard Real-Time: we must guarantee that task execution completes before deadline

o Compute-intensive
o Space/power bounded
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Performance Vs Predictability

Fast

GPU

PowerPC

68000

Predictable

5 /30




Many-core

Lots of simple cores
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Many-core

Lots of simple cores

Kalray MPPA (Massively Parallel Processor Array):

o 256 cores
o No cache consistency . .
o No out-of-order execution = gOOd fit for real-time?

o No branch prediction

[¢]

No timing anomaly
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Hard Real-Time on Many-Core

(0]
[ ! H _ & H . ] High-level Data-Flow Application Model

Synchronous hypothesis:

computation/communication in 0-time
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High-level Data-Flow Application Model
Synchronous hypothesis
computation/communication in 0-time
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High-level Data-Flow Application Model
Synchronous hypothesis
computation/communication in 0-time
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Synchronous hypothesis:

High-level Data-Flow Application Model
computation/communication in 0-time

}

Network On Chip
Communication takes time
Interferences between tasks

Shared Memory within Cluster
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Individual Cores
Cache, Pipeline, ...
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Hard Real-Time on Many-Core

[ ! H . 2 H 2 J High-level Data-Flow Application Model

Synchronous hypothesis:

computation/communication in 0-time
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~» Take into account all levels
in Worst-Case Execution Time (WCET) analysis
and programming model
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Context and Partners

\/m

& AIRBUS

HELICOPTERS

IRIT (WCET) IRISA (Scheduling) ~ ONERA (NoC)

Projet CAPACITES (Ph.D Rihani)
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Outline

Parallel code generation and analysis
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Execution of Synchronous Data Flow Programs

int main_app (i}, ip)

na = NA(i));

ne = NE(ip);

. nb = NB(na);
Single-core nd = ND(na);
nf = NF(ne);

code generation o = NC(nb,nd,nf):

return o;

static non-preemptive scheduling

High level representation

Industrialized as SCADE (1993)

heavily used in avionics and nuclear

L 10/ 30




Execution of Synchronous Data Flow Programs

int NAC...)

Multi/Many-core

// task 11
return (...);

code generation

static non-preemptive scheduling

High level representation

T4 T =~ T
PE, |wcm] werts L
.......................................... )
\
73 -y
PE, J werty Arer]
............. ,/,—‘)
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-
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Multi/Many-core

// task 11
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code generation

static non-preemptive scheduling

High level representation
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Execution of Synchronous Data Flow Programs

Multi/Many-core

code generation

High level representation

int NAC...)

// task 11
return (...);

static non-preemptive scheduling

N aem=e T
PE, | werty ] werts L
.......................................... g >
AY
73 C—e ™
PE, ’4 werts Arert] N
.......................................... L]
v Respect the dependency o g
constraints bl L o e
PE, o T ety T~ ,
N ~ N . 7

v Set the release dates to get
precise upper bounds
on the interference
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Parallel code generation from Lustre/SCADE (pseudo-code)

_NA

NB NC

L ’——-s\‘ s
PE, | [[werts [ werty |
.......................................... )
\
T3 P L
PE, J werty Arerta]
e T Al
7o / 7 P
-
PE,y | werty ] werty r
.......... T T T T RETITTTTT Re s s ke )
~ 7’

// Generated by SCADE KCG
void NA(ctx_a *ctx) {
// ... computation

}

void NA_wrapper (ctx_a *ctx) {
RECV_NA (i0) ;
NA(ctx) ;
SEND_NA_NB(...);

// Generated by us
void worker_PEO(void) {
ctx_a ctxa; ctx_b ctxb;
while (1) {
NA_wrapper (&ctxa) ;
wait(release_t2);
NB_wrapper (&ctxb) ;
wait (end_of_period);

}

#define RECV_NA (data)

I




Contributions (part of Ph.D Hamza Rihani, with Claire Maiza)

Precise accounting for interference on shared resources in a many-core processor

Q‘ tan.k of interest
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Contributions (part of Ph.D Hamza Rihani, with Claire Maiza)

Precise accounting for interference on shared resources in a many-core processor

Q‘ tan.k of interest

Model of a multi-level arbiter to the shared memory
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Contributions (part of Ph.D Hamza Rihani, with Claire Maiza)

Precise accounting for interference on shared resources in a many-core processor

Q‘ tan.k of interest

Model of a multi-level arbiter to the shared memory

g

- ~
BEHEHH

8 shared memory banks
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ElENE
[=]=] [=]=]

B
7]
(7]

Response time and release dates analysis respecting dependencies.
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Outline

Models Definition
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Architecture Model

/O DDR 0

o Kalray MPPA 256 Bostan
o 16 compute clusters + 4 1/0 clusters
o Dual NoC (Network on Chip)

|/O Ethernet 0
[ BURYI3 O/

/O DDR 1
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Architecture Model
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1/0 DDR 0
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Per cluster:
o 16 cores + 1 Resource Manager
o NoC Tx, NoC Rx, Debug Unit
o 16 shared memory banks (total size: 2 MB)
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Architecture Model

1/0 DDR 0

Per cluster:
o 16 cores + 1 Resource Manager
o NoC Tx, NoC Rx, Debug Unit
o 16 shared memory banks (total size: 2 MB)
o Multi-level bus arbiter per memory bank

1/O Ethernet 0
1 RuRYy3 0/
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1/0 DDR 1

shared
memory
bank

14 / 30




Execution Model
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[e]

Tasks mapping on cores .
pping o Execution model:

_ _ o execute in a “local” bank
Spatial Isolation o write to a “remote” bank
different tasks go to different memory banks

[e]

Static non-preemptive scheduling

o

Interference from communications

[e]
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Execution Model

s)ueq Alowsw paieys g
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Execution Model
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Application Model

o Directed Acyclic Task Graph
o Mono-rate

o Fixed mapping and execution order
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Application Model
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o Fixed mapping and execution order

o Each task 7;:
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Application Model

[¢]

(¢]

Directed Acyclic Task Graph

Mono-rate

Fixed mapping and execution order

Each task 7;:

o Input: Processor Demand, Memory Demand

Memory access time

R (O

7

—|—'—'—'—'—| Processor Deman N
1 1 1 1
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Application Model

o Directed Acyclic Task Graph
o Mono-rate
o Fixed mapping and execution order
o Each task 7;:
o Input: Processor Demand, Memory Demand
o Output: Release date (rel;), response time (R;)
R;
T —
Lo plsdlaton Do
O O O
00 40 80 120 160
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Application Model

[¢]

Directed Acyclic Task Graph

Mono-rate

[¢]

o Fixed mapping and execution order
Each task 7;:

o Input: Processor Demand, Memory Demand
o Output: Release date (rel;), response time (R;)

(¢]

R;

00 40 80 120 160
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Application Model

o Directed Acyclic Task Graph

o Mono-rate

o Fixed mapping and execution order
o Each task 7;:

o Input: Processor Demand, Memory Demand
o Output: Release date (rel;), response time (R;)

! !
! !
! !
| |
| |
T T
1 1

“\ Find R; (including the interference)

“\ Find rel; respecting precedence constraints
16 / 30




Outline

Multicore Response Time Analysis of SDF Programs

L 17 /30




Response Time Analysis
R = PD + I""(R)

—

o Response Time
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Response Time Analysis

R = PD + I"™(R)

o Response Time /

o Processor Demand
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Response Time Analysis

R = PD + I™5(R)
o Response Time /
o Processor Demand
o Bus Interference

(given a model of the bus arbiter)
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Response Time Analysis

R = PD + PP%(R) + I"°(R) + I°™(R)

o Response Timer\y
o Processor Demand
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(given a model of the bus arbiter)
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o Interference from DRAM refreshes

(out of scope. IPPAM —9)
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Response Time Analysis

R = PD + (R + I"“(R) + I"™(R)

o Response Timer\y
o Processor Demand

o Bus Interference

(given a model of the bus arbiter)

o Interference from preempting tasks

(no preemption: TPROC =0)

o Interference from DRAM refreshes

(out of scope. IPPAM —9)

o Fix-point formula = iterative algorithm.
o Multiple shared resources (memory banks)

IBUS(R) — Z IgUS(R)
beB

where B: a set of memory banks
X Requires a model of the bus arbiter
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Model of the MPPA Bus

G3 < higp
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et IE’US: delay from all accesses + concurrent ones
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Model of the MPPA Bus

G3 < h,'g,, p’/OritJ,
oot IE’US: delay from all accesses + concurrent ones

RR Memory
Bank

Sf?: number of accesses of task 7; to bank b

! !

00 40 80
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Model of the MPPA Bus

S IEUS: delay from all accesses + concurrent ones

Memory
Bank

Sf?: number of accesses of task 7; to bank b

b
Ai.' : number of concurrent accesses from core y to
bank b

_ b L Q :
Ln = ] Py i | ta:sk of interest
J_H___E_

15 ) ! [ I T B |
Lvy =Lvy+ ) min( A" | Lvp) : R
y=1 !
1
T
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Model of the MPPA Bus

e IEUS: delay from all accesses + concurrent ones

RR G2,b
1) A Memery

Sf.’: number of accesses of task 7; to bank b

b
Ai.' : number of concurrent accesses from core y to
bank b

[ Q task of interest
Pyr v 0 g_—‘ [
15 b L T T T T T
Lz = Lo JminC A Lo L
y=1 ' X

G2,b Yo | | |

Lvg =Lvp+min( A", Lvp) N

00 40 80
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Model of the MPPA Bus

high
Dr/ol.lty
agsb BUS.
i S I,)~>: delay from all accesses + concurrent ones
v Eank S;: number of accesses of task 7; to bank b

b
Ai.' : number of concurrent accesses from core y to
bank b

S Q task of interest
PO [ ! [
15 b L L e L e
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Model of the MPPA Bus

G3 < higp
Shared

G2 MBe;T:]El)(fY
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IEUS: delay from all accesses + concurrent ones

Sf?: number of accesses of task 7; to bank b

b
Ai.' : number of concurrent accesses from core y to
bank b

Co g__‘ C{I ta:sk of interest

15 b
Luy + Y min( A{’ ,Lvy)
y=1

Lvp
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I,"° = Luy x Bus Delay
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Model of the MPPA Bus

IEUS: delay from all accesses + concurrent ones

Shared
Memory
Bank

Sf?: number of accesses of task 7; to bank b

b
Ai.' : number of concurrent accesses from core y to
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Model of the MPPA Bus

oot IEUS: delay from all accesses + concurrent ones
Memory b
Banlk S;: number of accesses of task 7; to bank b
b
A;' : number of concurrent accesses from core y to
bank b
_ qb Q .
Ly = §; Py W taT%k of interest
15 b Vo 0600000 1
_ . L [ N S I A e o B
Lup =Lvj+ Y min( A VD) L R 7 A
y=1 1 i 27227277
Yo M
Lus = Loz +min A7), Lvp) R
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Lyy =Lvg+'A

i

A A"? depends on rel; and R;
I,"° = Luy x Bus Delay '
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Response Time Analysis with Dependencies
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Start with initial release dates.

@ initial rel; (

WCRT analysis

for all i do
Rg"l — PD,-+IBUS(R£, rel;)
end for

L 20 /30




Response Time Analysis with Dependencies

Pl Lol R L N

5 ] 1 gl
PE L R N initial reliov/ R 7K

WCRT analysis
T T T
PRl L m 1 [ = L [ 21 N for all i do
Rg"l — PD,-+IBUS(R£, rel;)
end for

Start with initial release dates.

Compute response times
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Response Time Analysis with Dependencies
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Response Time Analysis with Dependencies

PE| [7 | Ts |
PE,
PEo| | To | T |

Start with initial release dates.

Compute response times

......... a fixed-point is reached!

o 0
initial rel; v/ 2R

WCRT analysis

for all i do
Rg"l — PD,-+IBUS(R£, rel;)
end for

R;
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Response Time Analysis with Dependencies

Start with initial release dates.

Compute response times

......... a fixed-point is reached!

Update the release dates.

o 0
initial rel; v/ 2R

WCRT analysis

for all i do
Rg"l — PD,-+IBUS(R£, rel;)
end for

Ri

Update release dates
forall i do

rel; — latest finish time of all the
dependencies
end for
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Response Time Analysis with Dependencies

Start with initial release dates.

Compute response times

......... a fixed-point is reached!

Update the release dates.

Repeat until no release date changes

(another fixed-point iteration).

o 0
initial rel; v/ 2R

WCRT analysis

for all i do
Rg"l — PD,-+IBUS(R£, rel;)
end for o
R new rel;
repeat

Update release dates
for all i do

rel; — latest finish time of all the
dependencies
end for
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Response Time Analysis with Dependencies

Start with initial release dates.

Compute response times

......... a fixed-point is reached!
Update the release dates.
Repeat until no release date changes

(another fixed-point iteration).

o 0
initial rel; v/ 2R

WCRT analysis

for all i do
Rg"l — PD,-+IBUS(R£, rel;)
end for
new rel;
R;
repeate

Update release dates
for all i do

rel; — latest finish time of all the
dependencies
end for

rel; did not change

Return: (rel;, R;) 20 /30




Proof of Convergence Toward a Fixed-point

initial rel,® / el 4 Rl

WCRT analysis

for all i do BUS
11 !
ey | | N | I o | R —PD;+1 (Rj, rel;)
.............................................................. > end for
o Convergence of the 1% ‘fixed-point iteration: new rel
. i
Ri repeate

Update release dates
for all i do
rel; — latest finish time of all the de-
pendencies
end for

rel; did not change
Return: (rel;, R;)
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Proof of Convergence Toward a Fixed-point

initial re/io/ 5*1;!R§

WCRT analysis

for all i do BUS
! !
reo| [0 ] | T | R — PD;+ 1PV (R), rely)
.............................................................. ) end for
o Convergence of the 1% fixed-point iteration:
R new rel;
o Monotonic and bounded v ! repeate

Update release dates
for all i do
rel; — latest finish time of all the de-
pendencies
end for

rel; did not change
Return: (rel;, R;)
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Proof of Convergence Toward a Fixed-point

initial re/io/ b Rl

WCRT analysis

for all i do BUS
z !
Pe | | % ] = | R — PD;+ 1PV (R, relp
.............................................................. ) end for
o Convergence of the 1% fixed-point iteration: new rels
R' Z
o Monotonic and bounded v ! repeat

o Convergence of the 2nd fixed-point iteration:

Update release dates
for all i do
rel; — latest finish time of all the de-
pendencies
end for

rel; did not change
Return: (rel;, R;)
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Proof of Convergence Toward a Fixed-point

PEe| Lo A E— b, N
P e ,
| m ] [ ] ,

o Convergence of the 1% fixed-point iteration:
o Monotonic and bounded v’
o Convergence of the 2nd fixed-point iteration:
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Evaluation: ROSACE Case Study!
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1 Pagetti et al., RTAS 2014
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Evaluation: ROSACE Case Study

Task Processor Demand (cycles) | Memory Demand (accesses)
altitude 275 22
az_filter 274 22
h_filter 326 24
va__control 303 24
va_filter 301 23
vz_ control 320 25
vz_filter 334 25

Table: Task profiles of the FMS controller

o Profile obtained from measurements
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Experiments: Find the smallest schedulable hyper-period




Evaluation: Experiments
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Evaluation: Experiments

Taking into account the memory banks improves the analysis with a factor in [1.77,2.52]
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Conclusion

(¢]

Code generation and real-time analysis for many-core (Kalray MPPA 256)
= major challenge for industry and research

[e]

Hard Real-Time = simplicity, predictability = static, time-driven schedule

[e]

Critical = traceability = no aggressive optimization
Our work:

o Understand and model the precise architecture of MPPA
o Extension of Multi-Core Response Time Analysis
o Non-trivial proof of termination

[¢]
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Multicore Response Time Analysis

Example: Fixed Priority bus arbiter, PE1 > PEO
Bus access delay = 10

A A0 ek A D T
| | | | | | | | | |
PE1 2 accesses 2 accesses 2 accesses ’ 2 accesses
T T T T T T T T T T T
1 | | | | | | | | | | | | | | | |
I I I I I I I I To I I I I I I
I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I
PEO l l l l l l l l l l l l l l l
1 I I I I I I I I I I I I I I I I
1 ! ! ! | ! ! ! | ! ! ! | ! ! ! | ¢
00 40 80 120 160
1Altmeyer et al., RTNS 2015



Multicore Response Time Analysis

Bus access delay = 10

Example: Fixed Priority bus arbiter, PE1 > PEO

A T P et h
| | | | | | | | | |
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T T T T T T T T T T T
1 | | | | | | | | | | | | | | |
I I I I I I To I I I I I I
I I I I I I I I I I I I I I
I I I I I I I I I I I
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o Task of interest running on PEO:

Ry=10+3x10 (response time in isolation)

1Altmeyer et al., RTNS 2015



Multicore Response Time Analysis
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Bus access delay = 10
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PE1 2 accesses

2 accesses

Example: Fixed Priority bus arbiter, PE1 > PEO
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Ry=10+3x10 (response time in isolation)
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1Altmeyer et al., RTNS 2015
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Multicore Response Time Analysis

Example: Fixed Priority bus arbiter, PE1 > PEO
Bus access delay = 10

A A0 ek A D T
1 1 1 1 1 1 1 1
PE1 2 accesses 2 accesses 2 accesses 2 accesses

T T T T
I | | Response time | | | |
L

1 1 7 1 1 1 | To
| | | | | | N
s——————a

! | | | | | | | | | | | | | | | |
1 | | | | | | | | | | | | | | | | ¢

00 40 80 120 160

o Task of interest running on PEO:
Ry=10+3x10 (response time in isolation)
Ry =10+3x10+2x10=60
Ro=10+3x1042x1042x10=80
R3=10+3x10+2x10+2 x 10+0=80 (fixed-point)

1Altmeyer et al., RTNS 2015



The Global Picture
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