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Time-critical, compute intensive applications

◦ Hard Real-Time: we must guarantee that task execution completes before deadline
◦ Compute-intensive
◦ Space/power bounded
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Performance Vs Predictability

Predictable

Fast

68000

PowerPC

i7

GPU

Many Core
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Many-core
=

Lots of simple cores

Kalray MPPA (Massively Parallel Processor Array):

◦ 256 cores
◦ No cache consistency
◦ No out-of-order execution
◦ No branch prediction
◦ No timing anomaly

⇒ good fit for real-time?
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Hard Real-Time on Many-Core

High-level Data-Flow Application Model
Synchronous hypothesis:

computation/communication in 0-time

Network On Chip
Communication takes time

Shared Memory within Cluster
Interferences between tasks

Individual Cores
Cache, Pipeline, . . .

I1

I2

T1 T2

T3

O1

O2

 Take into account all levels
in Worst-Case Execution Time (WCET) analysis

and programming model
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Context and Partners

CIFRE
(Graillat)CI

FR
E
(L
o)

point-to-point

IRIT (WCET) IRISA (Scheduling) ONERA (NoC)

Projet CAPACITES (Ph.D Rihani)
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Execution of Synchronous Data Flow Programs

τ0

NA
τ1

NB
τ2

NC

τ3

ND

τ4

NE
τ5

NF

i0

i1

o

High level representation

3 Respect the dependency
constraints

3 Set the release dates to get
precise upper bounds
on the interference

code generation

Single-core

static non-preemptive scheduling

Industrialized as SCADE (1993)
heavily used in avionics and nuclear

� �
int main_app(i1, i2)
{

na = NA(i1);
ne = NE(i2);
nb = NB(na);
nd = ND(na);
nf = NF(ne);
o = NC(nb,nd,nf);
return o;

}� �
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Parallel code generation from Lustre/SCADE (pseudo-code)

τ0

NA
τ1

NB
τ2

NC

τ3

ND

τ4

NE
τ5

NF

i0

i1

o

� �
// Generated by SCADE KCG
void NA(ctx_a *ctx) {

// ... computation ...
}

void NA_wrapper(ctx_a *ctx) {
RECV_NA(i0);
NA(ctx);
SEND_NA_NB (...);

}� �

PE2

PE1

PE0 wcrt0

τ0

wcrt1

τ1

wcrt2

τ2

wcrt3

τ3

wcrt4

τ4

wcrt5

τ5

� �
// Generated by us
void worker_PE0(void) {

ctx_a ctxa; ctx_b ctxb;
while (1) {

NA_wrapper (&ctxa);
wait(release_t2);
NB_wrapper (&ctxb);
wait(end_of_period);

}
}

#define RECV_NA(data) ...� �11 / 30



Contributions (part of Ph.D Hamza Rihani, with Claire Maiza)

1 Precise accounting for interference on shared resources in a many-core processor
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3 Response time and release dates analysis respecting dependencies.
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Architecture Model
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◦ Kalray MPPA 256 Bostan
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Execution Model
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◦ Tasks mapping on cores
◦ Static non-preemptive scheduling
◦ Spatial Isolation

different tasks go to different memory banks

◦ Interference from communications

◦ Execution model:
◦ execute in a “local” bank
◦ write to a “remote” bank
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Application Model
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o ◦ Directed Acyclic Task Graph
◦ Mono-rate
◦ Fixed mapping and execution order

◦ Each task τi:
◦ Input: Processor Demand, Memory Demand
◦ Output: Release date (reli), response time (Ri)
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Response Time Analysis

R = PD + IBUS(R)

+ IPROC(R) + IDRAM (R)

◦ Response Time

◦ Processor Demand
◦ Bus Interference
(given a model of the bus arbiter)
◦ Interference from preempting tasks

(no preemption: IPROC = 0)
◦ Interference from DRAM refreshes

(out of scope. IDRAM = 0)

◦ Fix-point formula ⇒ iterative algorithm.
◦ Multiple shared resources (memory banks)

IBUS(R) =
∑
b∈B

IBUS
b (R)

where B: a set of memory banks

Requires a model of the bus arbiter
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Model of the MPPA Bus
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Response Time Analysis with Dependencies
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τ0 τ1 τ2

τ3

τ4 τ5

1 Start with initial release dates.

2 Compute response times

... ... ... a fixed-point is reached!

3 Update the release dates.

4 Repeat until no release date changes

(another fixed-point iteration).

WCRT analysis
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end for

1 initial reli
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for all i do

reli ← latest finish time of all the
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reli did not change
Return: (reli,Ri)
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Proof of Convergence Toward a Fixed-point
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◦ Convergence of the 1st fixed-point iteration:

◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:

◦ no monotonicity: Ri and reli may grow or shrink at
each iteration. ?

Theorem
At each iteration, at least one task finds its final release date.

Full proof in our technical report:
http://www-verimag.imag.fr/TR/TR-2016-1.pdf
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Evaluation: ROSACE Case Study1
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Evaluation: ROSACE Case Study

Task Processor Demand (cycles) Memory Demand (accesses)
altitude 275 22
az_filter 274 22
h_filter 326 24

va_control 303 24
va_filter 301 23
vz_control 320 25
vz_filter 334 25

Table: Task profiles of the FMS controller

◦ Profile obtained from measurements

◦ Memory Demand: data and instruction cache misses + communications
◦ Moreover:

◦ NoC Rx : writes 5 words
◦ NoC Tx : reads 2 words

Experiments: Find the smallest schedulable hyper-period
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Evaluation: Experiments
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Evaluation: Experiments
Taking into account the memory banks improves the analysis with a factor in [1.77,2.52]
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Conclusion

◦ Code generation and real-time analysis for many-core (Kalray MPPA 256)
= major challenge for industry and research

◦ Hard Real-Time ⇒ simplicity, predictability ⇒ static, time-driven schedule
◦ Critical ⇒ traceability ⇒ no aggressive optimization
◦ Our work:

◦ Understand and model the precise architecture of MPPA
◦ Extension of Multi-Core Response Time Analysis
◦ Non-trivial proof of termination

28 / 30



Future Work

◦ Model of the Resource Manager.

◦ Model of the NoC accesses.

◦ Memory access pipelining.
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2 accesses 2 accesses

T1

2 accesses

T1

2 accesses

T1 T1

3 accesses

T0

3 accesses

Response time

◦ Task of interest running on PE0:
R0 = 10 + 3×10 (response time in isolation)
R1 = 10 + 3×10 + 2×10 = 60

R2 = 10 + 3×10 + 2×10 + 2×10 = 80

R3 = 10 + 3×10 + 2×10 + 2×10 + 0 = 80 (fixed-point)

1Altmeyer et al., RTNS 2015



The Global Picture
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