
Compilation and Real-Time Analysis
of a Synchronous Data-Flow Application

on the Kalray MPPA Many-Core Processor

Matthieu Moy (from a presentation by Hamza Rihani)

Verimag (Grenoble INP)
Grenoble, France

June 2017

1 / 30

Outline

1 Critical, Real-Time and Many-Core

2 Parallel code generation and analysis

3 Models Definition

4 Multicore Response Time Analysis of SDF Programs

5 Evaluation

6 Conclusion and Future Work

7 A new compilation team in Lyon (LIP) ?

2 / 30

Outline

1 Critical, Real-Time and Many-Core

2 Parallel code generation and analysis

3 Models Definition

4 Multicore Response Time Analysis of SDF Programs

5 Evaluation

6 Conclusion and Future Work

7 A new compilation team in Lyon (LIP) ?

3 / 30

Time-critical, compute intensive applications

◦ Hard Real-Time: we must guarantee that task execution completes before deadline
◦ Compute-intensive
◦ Space/power bounded

4 / 30

Performance Vs Predictability

Predictable

Fast

68000

PowerPC

i7

GPU

Many Core

5 / 30

Many-core
=

Lots of simple cores

Kalray MPPA (Massively Parallel Processor Array):

◦ 256 cores
◦ No cache consistency
◦ No out-of-order execution
◦ No branch prediction
◦ No timing anomaly

⇒ good fit for real-time?

6 / 30

Many-core
=

Lots of simple cores
Kalray MPPA (Massively Parallel Processor Array):

◦ 256 cores
◦ No cache consistency
◦ No out-of-order execution
◦ No branch prediction
◦ No timing anomaly

⇒ good fit for real-time?

6 / 30

Hard Real-Time on Many-Core

High-level Data-Flow Application Model
Synchronous hypothesis:

computation/communication in 0-time

Network On Chip
Communication takes time

Shared Memory within Cluster
Interferences between tasks

Individual Cores
Cache, Pipeline, . . .

I1

I2

T1 T2

T3

O1

O2

 Take into account all levels
in Worst-Case Execution Time (WCET) analysis

and programming model

7 / 30

Hard Real-Time on Many-Core

High-level Data-Flow Application Model
Synchronous hypothesis:

computation/communication in 0-time

Network On Chip
Communication takes time

Shared Memory within Cluster
Interferences between tasks

Individual Cores
Cache, Pipeline, . . .

I1

I2

T1 T2

T3

O1

O2

 Take into account all levels
in Worst-Case Execution Time (WCET) analysis

and programming model

7 / 30

Hard Real-Time on Many-Core

High-level Data-Flow Application Model
Synchronous hypothesis:

computation/communication in 0-time

Network On Chip
Communication takes time

Shared Memory within Cluster
Interferences between tasks

Individual Cores
Cache, Pipeline, . . .

I1

I2

T1 T2

T3

O1

O2

 Take into account all levels
in Worst-Case Execution Time (WCET) analysis

and programming model

7 / 30

Hard Real-Time on Many-Core

High-level Data-Flow Application Model
Synchronous hypothesis:

computation/communication in 0-time

Network On Chip
Communication takes time

Shared Memory within Cluster
Interferences between tasks

Individual Cores
Cache, Pipeline, . . .

I1

I2

T1 T2

T3

O1

O2

 Take into account all levels
in Worst-Case Execution Time (WCET) analysis

and programming model

7 / 30

Hard Real-Time on Many-Core

High-level Data-Flow Application Model
Synchronous hypothesis:

computation/communication in 0-time

Network On Chip
Communication takes time

Shared Memory within Cluster
Interferences between tasks

Individual Cores
Cache, Pipeline, . . .

I1

I2

T1 T2

T3

O1

O2

 Take into account all levels
in Worst-Case Execution Time (WCET) analysis

and programming model
7 / 30

Context and Partners

CIFRE
(Graillat)CI

FR
E
(L
o)

point-to-point

IRIT (WCET) IRISA (Scheduling) ONERA (NoC)

Projet CAPACITES (Ph.D Rihani)
8 / 30

Outline

1 Critical, Real-Time and Many-Core

2 Parallel code generation and analysis

3 Models Definition

4 Multicore Response Time Analysis of SDF Programs

5 Evaluation

6 Conclusion and Future Work

7 A new compilation team in Lyon (LIP) ?

9 / 30

Execution of Synchronous Data Flow Programs

τ0

NA
τ1

NB
τ2

NC

τ3

ND

τ4

NE
τ5

NF

i0

i1

o

High level representation

3 Respect the dependency
constraints

3 Set the release dates to get
precise upper bounds
on the interference

code generation

Single-core

static non-preemptive scheduling

Industrialized as SCADE (1993)
heavily used in avionics and nuclear

� �
int main_app(i1, i2)
{

na = NA(i1);
ne = NE(i2);
nb = NB(na);
nd = ND(na);
nf = NF(ne);
o = NC(nb,nd,nf);
return o;

}� �

10 / 30

Execution of Synchronous Data Flow Programs

τ0

NA
τ1

NB
τ2

NC

τ3

ND

τ4

NE
τ5

NF

i0

i1

o

High level representation

3 Respect the dependency
constraints

3 Set the release dates to get
precise upper bounds
on the interference

code generation

Multi/Many-core

static non-preemptive scheduling

int NF(...)
{
// task τ6

return (...);
}

int NE(...)
{
// task τ5

return (...);
}

int ND(...)
{
// task τ4

return (...);
}

int NC(...)
{
// task τ3

return (...);
}

int NB(...)
{
// task τ2

return (...);
}

int NA(...)
{
// task τ1

return (...);
}

PE2

PE1

PE0 wcrt0

τ0

wcrt1

τ1

wcrt2

τ2

wcrt3

τ3

wcrt4

τ4

wcrt5

τ5

10 / 30

Execution of Synchronous Data Flow Programs

τ0

NA
τ1

NB
τ2

NC

τ3

ND

τ4

NE
τ5

NF

i0

i1

o

High level representation

3 Respect the dependency
constraints

3 Set the release dates to get
precise upper bounds
on the interference

code generation

Multi/Many-core

static non-preemptive scheduling

int NF(...)
{
// task τ6

return (...);
}

int NE(...)
{
// task τ5

return (...);
}

int ND(...)
{
// task τ4

return (...);
}

int NC(...)
{
// task τ3

return (...);
}

int NB(...)
{
// task τ2

return (...);
}

int NA(...)
{
// task τ1

return (...);
}

PE2

PE1

PE0 wcrt0

τ0

wcrt1

τ1

wcrt2

τ2

wcrt3

τ3

wcrt4

τ4

wcrt5

τ5

10 / 30

Execution of Synchronous Data Flow Programs

τ0

NA
τ1

NB
τ2

NC

τ3

ND

τ4

NE
τ5

NF

i0

i1

o

High level representation

3 Respect the dependency
constraints

3 Set the release dates to get
precise upper bounds
on the interference

code generation

Multi/Many-core

static non-preemptive scheduling

int NF(...)
{
// task τ6

return (...);
}

int NE(...)
{
// task τ5

return (...);
}

int ND(...)
{
// task τ4

return (...);
}

int NC(...)
{
// task τ3

return (...);
}

int NB(...)
{
// task τ2

return (...);
}

int NA(...)
{
// task τ1

return (...);
}

PE2

PE1

PE0 wcrt0

τ0

wcrt1

τ1

wcrt2

τ2

wcrt3

τ3

wcrt4

τ4

wcrt5

τ5

10 / 30

Parallel code generation from Lustre/SCADE (pseudo-code)

τ0

NA
τ1

NB
τ2

NC

τ3

ND

τ4

NE
τ5

NF

i0

i1

o

� �
// Generated by SCADE KCG
void NA(ctx_a *ctx) {

// ... computation ...
}

void NA_wrapper(ctx_a *ctx) {
RECV_NA(i0);
NA(ctx);
SEND_NA_NB (...);

}� �

PE2

PE1

PE0 wcrt0

τ0

wcrt1

τ1

wcrt2

τ2

wcrt3

τ3

wcrt4

τ4

wcrt5

τ5

� �
// Generated by us
void worker_PE0(void) {

ctx_a ctxa; ctx_b ctxb;
while (1) {

NA_wrapper (&ctxa);
wait(release_t2);
NB_wrapper (&ctxb);
wait(end_of_period);

}
}

#define RECV_NA(data) ...� �11 / 30

Contributions (part of Ph.D Hamza Rihani, with Claire Maiza)

1 Precise accounting for interference on shared resources in a many-core processor

t

P0

y

00 40 80

task of interest

2 Model of a multi-level arbiter to the shared memory

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

3 Response time and release dates analysis respecting dependencies.

12 / 30

Contributions (part of Ph.D Hamza Rihani, with Claire Maiza)

1 Precise accounting for interference on shared resources in a many-core processor

t

P0

y

00 40 80

task of interest

2 Model of a multi-level arbiter to the shared memory

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

3 Response time and release dates analysis respecting dependencies.

12 / 30

Contributions (part of Ph.D Hamza Rihani, with Claire Maiza)

1 Precise accounting for interference on shared resources in a many-core processor

t

P0

y

00 40 80

task of interest

2 Model of a multi-level arbiter to the shared memory

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

3 Response time and release dates analysis respecting dependencies.

12 / 30

Outline

1 Critical, Real-Time and Many-Core

2 Parallel code generation and analysis

3 Models Definition

4 Multicore Response Time Analysis of SDF Programs

5 Evaluation

6 Conclusion and Future Work

7 A new compilation team in Lyon (LIP) ?

13 / 30

Architecture Model

I/
O

Et
he
rn
et

0 I/O
Ethernet

1

I/O DDR 0

I/O DDR 1

◦ Kalray MPPA 256 Bostan

◦ 16 compute clusters + 4 I/O clusters

◦ Dual NoC (Network on Chip)

Rx

Tx

DSU

RM

P15

P0

RR
3→1

RR
16→1

RR
2→1

FP
shared
memory
bank

high priority
G3

G2

G1

14 / 30

Architecture Model
I/
O

Et
he
rn
et

0 I/O
Ethernet

1

I/O DDR 0

I/O DDR 1

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

Per cluster:
◦ 16 cores + 1 Resource Manager

◦ NoC Tx, NoC Rx, Debug Unit

◦ 16 shared memory banks (total size: 2 MB)

◦ Multi-level bus arbiter per memory bank

Rx

Tx

DSU

RM

P15

P0

RR
3→1

RR
16→1

RR
2→1

FP
shared
memory
bank

high priority
G3

G2

G1

14 / 30

Architecture Model
I/
O

Et
he
rn
et

0 I/O
Ethernet

1

I/O DDR 0

I/O DDR 1

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

Per cluster:
◦ 16 cores + 1 Resource Manager

◦ NoC Tx, NoC Rx, Debug Unit

◦ 16 shared memory banks (total size: 2 MB)

◦ Multi-level bus arbiter per memory bank

Rx

Tx

DSU

RM

P15

P0

RR
3→1

RR
16→1

RR
2→1

FP
shared
memory
bank

high priority
G3

G2

G1

14 / 30

Execution Model

τ0

NA
τ1

NB
τ2

NC

τ3

ND

τ4

NE
τ5

NF

i0

i1

o

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

P0

P1

P2

arbiter

arbiter

arbiter

b0

b1

b2

memory bank
(128 KB)

◦ Tasks mapping on cores
◦ Static non-preemptive scheduling
◦ Spatial Isolation

different tasks go to different memory banks

◦ Interference from communications

◦ Execution model:
◦ execute in a “local” bank
◦ write to a “remote” bank

15 / 30

Execution Model

τ0

NA
τ1

NB
τ2

NC

τ3

ND

τ4

NE
τ5

NF

i0

i1

o

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

P0

P1

P2

arbiter

arbiter

arbiter

b0

b1

b2

memory bank
(128 KB)

◦ Tasks mapping on cores
◦ Static non-preemptive scheduling
◦ Spatial Isolation

different tasks go to different memory banks

◦ Interference from communications

◦ Execution model:
◦ execute in a “local” bank
◦ write to a “remote” bank

15 / 30

Execution Model

τ0

NA
τ1

NB
τ2

NC

τ3

ND

τ4

NE
τ5

NF

i0

i1

o

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

P0

P1

P2

arbiter

arbiter

arbiter

b0

b1

b2

memory bank
(128 KB)

◦ Tasks mapping on cores
◦ Static non-preemptive scheduling
◦ Spatial Isolation

different tasks go to different memory banks

◦ Interference from communications

◦ Execution model:
◦ execute in a “local” bank
◦ write to a “remote” bank

15 / 30

Execution Model

τ0

NA
τ1

NB
τ2

NC

τ3

ND

τ4

NE
τ5

NF

i0

i1

o

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

P0

P1

P2

arbiter

arbiter

arbiter

b0

b1

b2

memory bank
(128 KB)

◦ Tasks mapping on cores
◦ Static non-preemptive scheduling
◦ Spatial Isolation

different tasks go to different memory banks

◦ Interference from communications

◦ Execution model:
◦ execute in a “local” bank
◦ write to a “remote” bank

15 / 30

Application Model

τ0

NA
τ1

NB
τ2

NC

τ3

ND

τ4

NE
τ5

NF

i0

i1

o ◦ Directed Acyclic Task Graph
◦ Mono-rate
◦ Fixed mapping and execution order

◦ Each task τi:
◦ Input: Processor Demand, Memory Demand
◦ Output: Release date (reli), response time (Ri)

t

00 40 80 120 160

Processor Demand

Memory access time

reli

Interference

E

E
0

Find Ri (including the interference)
Find reli respecting precedence constraints

16 / 30

Application Model

τ0

NA
τ1

NB
τ2

NC

τ3

ND

τ4

NE
τ5

NF

i0

i1

o ◦ Directed Acyclic Task Graph
◦ Mono-rate
◦ Fixed mapping and execution order
◦ Each task τi:

◦ Input: Processor Demand, Memory Demand
◦ Output: Release date (reli), response time (Ri)

t

00 40 80 120 160

Processor Demand

Memory access time

reli

Interference

E

E
0

Find Ri (including the interference)
Find reli respecting precedence constraints

16 / 30

Application Model

τ0

NA
τ1

NB
τ2

NC

τ3

ND

τ4

NE
τ5

NF

i0

i1

o ◦ Directed Acyclic Task Graph
◦ Mono-rate
◦ Fixed mapping and execution order
◦ Each task τi:

◦ Input: Processor Demand, Memory Demand

◦ Output: Release date (reli), response time (Ri)

t

00 40 80 120 160

Processor Demand

Memory access time

reli

Interference

E

E
0

Find Ri (including the interference)
Find reli respecting precedence constraints

16 / 30

Application Model

τ0

NA
τ1

NB
τ2

NC

τ3

ND

τ4

NE
τ5

NF

i0

i1

o ◦ Directed Acyclic Task Graph
◦ Mono-rate
◦ Fixed mapping and execution order
◦ Each task τi:

◦ Input: Processor Demand, Memory Demand
◦ Output: Release date (reli), response time (Ri)

t

00 40 80 120 160

Processor Demand

Memory access time

reli

Ri

Isolation

Interference

E

E
0

Find Ri (including the interference)
Find reli respecting precedence constraints

16 / 30

Application Model

τ0

NA
τ1

NB
τ2

NC

τ3

ND

τ4

NE
τ5

NF

i0

i1

o ◦ Directed Acyclic Task Graph
◦ Mono-rate
◦ Fixed mapping and execution order
◦ Each task τi:

◦ Input: Processor Demand, Memory Demand
◦ Output: Release date (reli), response time (Ri)

t

00 40 80 120 160

Processor Demand

Memory access time

reli

Ri

Interference

E

E
0

Find Ri (including the interference)
Find reli respecting precedence constraints

16 / 30

Application Model

τ0

NA
τ1

NB
τ2

NC

τ3

ND

τ4

NE
τ5

NF

i0

i1

o ◦ Directed Acyclic Task Graph
◦ Mono-rate
◦ Fixed mapping and execution order
◦ Each task τi:

◦ Input: Processor Demand, Memory Demand
◦ Output: Release date (reli), response time (Ri)

t

00 40 80 120 160

Processor Demand

Memory access time

reli

Ri

Interference

E

E
0

Find Ri (including the interference)
Find reli respecting precedence constraints

16 / 30

Outline

1 Critical, Real-Time and Many-Core

2 Parallel code generation and analysis

3 Models Definition

4 Multicore Response Time Analysis of SDF Programs

5 Evaluation

6 Conclusion and Future Work

7 A new compilation team in Lyon (LIP) ?

17 / 30

Response Time Analysis

R = PD + IBUS(R)

+ IPROC(R) + IDRAM (R)

◦ Response Time

◦ Processor Demand
◦ Bus Interference
(given a model of the bus arbiter)
◦ Interference from preempting tasks

(no preemption: IPROC = 0)
◦ Interference from DRAM refreshes

(out of scope. IDRAM = 0)

◦ Fix-point formula ⇒ iterative algorithm.
◦ Multiple shared resources (memory banks)

IBUS(R) =
∑
b∈B

IBUS
b (R)

where B: a set of memory banks

Requires a model of the bus arbiter

18 / 30

Response Time Analysis

R = PD + IBUS(R)

+ IPROC(R) + IDRAM (R)

◦ Response Time
◦ Processor Demand

◦ Bus Interference
(given a model of the bus arbiter)
◦ Interference from preempting tasks

(no preemption: IPROC = 0)
◦ Interference from DRAM refreshes

(out of scope. IDRAM = 0)

◦ Fix-point formula ⇒ iterative algorithm.
◦ Multiple shared resources (memory banks)

IBUS(R) =
∑
b∈B

IBUS
b (R)

where B: a set of memory banks

Requires a model of the bus arbiter

18 / 30

Response Time Analysis

R = PD + IBUS(R)

+ IPROC(R) + IDRAM (R)

◦ Response Time
◦ Processor Demand

◦ Bus Interference
(given a model of the bus arbiter)

◦ Interference from preempting tasks

(no preemption: IPROC = 0)
◦ Interference from DRAM refreshes

(out of scope. IDRAM = 0)

◦ Fix-point formula ⇒ iterative algorithm.
◦ Multiple shared resources (memory banks)

IBUS(R) =
∑
b∈B

IBUS
b (R)

where B: a set of memory banks

Requires a model of the bus arbiter

18 / 30

Response Time Analysis

R = PD + IBUS(R) + IPROC(R) + IDRAM (R)

◦ Response Time
◦ Processor Demand

◦ Bus Interference
(given a model of the bus arbiter)
◦ Interference from preempting tasks

(no preemption: IPROC = 0)
◦ Interference from DRAM refreshes

(out of scope. IDRAM = 0)

◦ Fix-point formula ⇒ iterative algorithm.
◦ Multiple shared resources (memory banks)

IBUS(R) =
∑
b∈B

IBUS
b (R)

where B: a set of memory banks

Requires a model of the bus arbiter

18 / 30

Response Time Analysis

R = PD + IBUS(R) + IPROC(R) + IDRAM (R)

◦ Response Time
◦ Processor Demand

◦ Bus Interference
(given a model of the bus arbiter)
◦ Interference from preempting tasks

(no preemption: IPROC = 0)
◦ Interference from DRAM refreshes

(out of scope. IDRAM = 0)

◦ Fix-point formula ⇒ iterative algorithm.

◦ Multiple shared resources (memory banks)

IBUS(R) =
∑
b∈B

IBUS
b (R)

where B: a set of memory banks

Requires a model of the bus arbiter

18 / 30

Response Time Analysis

R = PD + IBUS(R) + IPROC(R) + IDRAM (R)

◦ Response Time
◦ Processor Demand

◦ Bus Interference
(given a model of the bus arbiter)
◦ Interference from preempting tasks

(no preemption: IPROC = 0)
◦ Interference from DRAM refreshes

(out of scope. IDRAM = 0)

◦ Fix-point formula ⇒ iterative algorithm.
◦ Multiple shared resources (memory banks)

IBUS(R) =
∑
b∈B

IBUS
b (R)

where B: a set of memory banks

Requires a model of the bus arbiter

18 / 30

Response Time Analysis

R = PD + IBUS(R) + IPROC(R) + IDRAM (R)

◦ Response Time
◦ Processor Demand

◦ Bus Interference
(given a model of the bus arbiter)
◦ Interference from preempting tasks

(no preemption: IPROC = 0)
◦ Interference from DRAM refreshes

(out of scope. IDRAM = 0)

◦ Fix-point formula ⇒ iterative algorithm.
◦ Multiple shared resources (memory banks)

IBUS(R) =
∑
b∈B

IBUS
b (R)

where B: a set of memory banks

Requires a model of the bus arbiter

18 / 30

Response Time Analysis

R = PD + IBUS(R) + IPROC(R) + IDRAM (R)

◦ Response Time
◦ Processor Demand

◦ Bus Interference
(given a model of the bus arbiter)
◦ Interference from preempting tasks

(no preemption: IPROC = 0)
◦ Interference from DRAM refreshes

(out of scope. IDRAM = 0)

◦ Fix-point formula ⇒ iterative algorithm.
◦ Multiple shared resources (memory banks)

IBUS(R) =
∑
b∈B

IBUS
b (R)

where B: a set of memory banks

Requires a model of the bus arbiter

18 / 30

Model of the MPPA Bus

Rx

Tx

DSU

RM

P15

P1

P0

Lv1

RR
3→1

RR
16→1

Lv2

RR
2→1
Lv3

FP

Lv4

Shared
Memory
Bank

high priority
G3

G2

G1

IBUSb : delay from all accesses + concurrent ones

Sb
i : number of accesses of task τi to bank b

Ay,b
i : number of concurrent accesses from core y to

bank b

Lv1 = Sb
i

Lv2 = Lv1 +
15∑

y=1
min(A

y,b
i ,Lv1)

Lv3 = Lv2 + min(AG2,b
i ,Lv2)

Lv4 = Lv4 + AG3,b
i

IBUS
b = Lv4 ×Bus Delay

t

P0

y

00 40 80

task of interest

B Ay,b
i depends on reli and Ri

AG2, b
i

AG3, b
i

E

0E

19 / 30

Model of the MPPA Bus

Rx

Tx

DSU

RM

P15

P1

P0

Lv1

RR
3→1

RR
16→1

Lv2

RR
2→1
Lv3

FP

Lv4

Shared
Memory
Bank

high priority
G3

G2

G1

IBUSb : delay from all accesses + concurrent ones

Sb
i : number of accesses of task τi to bank b

Ay,b
i : number of concurrent accesses from core y to

bank b

Lv1 = Sb
i

Lv2 = Lv1 +
15∑

y=1
min(A

y,b
i ,Lv1)

Lv3 = Lv2 + min(AG2,b
i ,Lv2)

Lv4 = Lv4 + AG3,b
i

IBUS
b = Lv4 ×Bus Delay

t

P0

y

00 40 80

task of interest

B Ay,b
i depends on reli and Ri

AG2, b
i

AG3, b
i

E

0E

19 / 30

Model of the MPPA Bus

Rx

Tx

DSU

RM

P15

P1

P0

Lv1

RR
3→1

RR
16→1

Lv2

RR
2→1
Lv3

FP

Lv4

Shared
Memory
Bank

high priority
G3

G2

G1

IBUSb : delay from all accesses + concurrent ones

Sb
i : number of accesses of task τi to bank b

Ay,b
i : number of concurrent accesses from core y to

bank b

Lv1 = Sb
i

Lv2 = Lv1 +
15∑

y=1
min(A

y,b
i ,Lv1)

Lv3 = Lv2 + min(AG2,b
i ,Lv2)

Lv4 = Lv4 + AG3,b
i

IBUS
b = Lv4 ×Bus Delay

t

P0

y

00 40 80

task of interest

B Ay,b
i depends on reli and Ri

AG2, b
i

AG3, b
i

E

0E

19 / 30

Model of the MPPA Bus

Rx

Tx

DSU

RM

P15

P1

P0

Lv1

RR
3→1

RR
16→1

Lv2

RR
2→1
Lv3

FP

Lv4

Shared
Memory
Bank

high priority
G3

G2

G1

IBUSb : delay from all accesses + concurrent ones

Sb
i : number of accesses of task τi to bank b

Ay,b
i : number of concurrent accesses from core y to

bank b

Lv1 = Sb
i

Lv2 = Lv1 +
15∑

y=1
min(A

y,b
i ,Lv1)

Lv3 = Lv2 + min(AG2,b
i ,Lv2)

Lv4 = Lv4 + AG3,b
i

IBUS
b = Lv4 ×Bus Delay

t

P0

y

00 40 80

task of interest

B Ay,b
i depends on reli and Ri

AG2, b
i

AG3, b
i

E

0E

19 / 30

Model of the MPPA Bus

Rx

Tx

DSU

RM

P15

P1

P0

Lv1

RR
3→1

RR
16→1

Lv2

RR
2→1
Lv3

FP

Lv4

Shared
Memory
Bank

high priority
G3

G2

G1

IBUSb : delay from all accesses + concurrent ones

Sb
i : number of accesses of task τi to bank b

Ay,b
i : number of concurrent accesses from core y to

bank b

Lv1 = Sb
i

Lv2 = Lv1 +
15∑

y=1
min(A

y,b
i ,Lv1)

Lv3 = Lv2 + min(AG2,b
i ,Lv2)

Lv4 = Lv4 + AG3,b
i

IBUS
b = Lv4 ×Bus Delay

t

P0

y

00 40 80

task of interest

B Ay,b
i depends on reli and Ri

AG2, b
i

AG3, b
i

E

0E

19 / 30

Model of the MPPA Bus

Rx

Tx

DSU

RM

P15

P1

P0

Lv1

RR
3→1

RR
16→1

Lv2

RR
2→1
Lv3

FP

Lv4

Shared
Memory
Bank

high priority
G3

G2

G1

IBUSb : delay from all accesses + concurrent ones

Sb
i : number of accesses of task τi to bank b

Ay,b
i : number of concurrent accesses from core y to

bank b

Lv1 = Sb
i

Lv2 = Lv1 +
15∑

y=1
min(A

y,b
i ,Lv1)

Lv3 = Lv2 + min(AG2,b
i ,Lv2)

Lv4 = Lv4 + AG3,b
i

IBUS
b = Lv4 ×Bus Delay

t

P0

y

00 40 80

task of interest

B Ay,b
i depends on reli and Ri

AG2, b
i

AG3, b
i

E

0E

19 / 30

Model of the MPPA Bus

Rx

Tx

DSU

RM

P15

P1

P0

Lv1

RR
3→1

RR
16→1

Lv2

RR
2→1
Lv3

FP

Lv4

Shared
Memory
Bank

high priority
G3

G2

G1

IBUSb : delay from all accesses + concurrent ones

Sb
i : number of accesses of task τi to bank b

Ay,b
i : number of concurrent accesses from core y to

bank b

Lv1 = Sb
i

Lv2 = Lv1 +
15∑

y=1
min(A

y,b
i ,Lv1)

Lv3 = Lv2 + min(AG2,b
i ,Lv2)

Lv4 = Lv4 + AG3,b
i

IBUS
b = Lv4 ×Bus Delay

t

P0

y

00 40 80

task of interest

B Ay,b
i depends on reli and Ri

AG2, b
i

AG3, b
i

E

0E

19 / 30

Model of the MPPA Bus

Rx

Tx

DSU

RM

P15

P1

P0

Lv1

RR
3→1

RR
16→1

Lv2

RR
2→1
Lv3

FP

Lv4

Shared
Memory
Bank

high priority
G3

G2

G1

IBUSb : delay from all accesses + concurrent ones

Sb
i : number of accesses of task τi to bank b

Ay,b
i : number of concurrent accesses from core y to

bank b

Lv1 = Sb
i

Lv2 = Lv1 +
15∑

y=1
min(A

y,b
i ,Lv1)

Lv3 = Lv2 + min(AG2,b
i ,Lv2)

Lv4 = Lv4 + AG3,b
i

IBUS
b = Lv4 ×Bus Delay

t

P0

y

00 40 80

task of interest

B Ay,b
i depends on reli and Ri

AG2, b
i

AG3, b
i

E

0E

19 / 30

Response Time Analysis with Dependencies

PE2

PE1

PE0
τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

1 Start with initial release dates.

2 Compute response times

... a fixed-point is reached!

3 Update the release dates.

4 Repeat until no release date changes

(another fixed-point iteration).

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

1 initial reli

initial rel 0
i

Rl+1
i 6= Rl

i

2
Rl+1

i 6= Rl
i

Update release dates
for all i do

reli ← latest finish time of all the
dependencies
end for

3

Ri

2Ri
new reli
repeat

4

new reli
repeate

reli did not change
Return: (reli,Ri)

4

20 / 30

Response Time Analysis with Dependencies

PE2

PE1

PE0
τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

1 Start with initial release dates.

2 Compute response times

...

... ... a fixed-point is reached!
3 Update the release dates.

4 Repeat until no release date changes

(another fixed-point iteration).

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

1 initial reli

initial rel 0
i

Rl+1
i 6= Rl

i

2

Rl+1
i 6= Rl

i

Update release dates
for all i do

reli ← latest finish time of all the
dependencies
end for

3

Ri

2Ri
new reli
repeat

4

new reli
repeate

reli did not change
Return: (reli,Ri)

4

20 / 30

Response Time Analysis with Dependencies

PE2

PE1

PE0
τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

1 Start with initial release dates.

2 Compute response times

... ...

... a fixed-point is reached!
3 Update the release dates.

4 Repeat until no release date changes

(another fixed-point iteration).

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

1 initial reli

initial rel 0
i

Rl+1
i 6= Rl

i

2

Rl+1
i 6= Rl

i

Update release dates
for all i do

reli ← latest finish time of all the
dependencies
end for

3

Ri

2Ri
new reli
repeat

4

new reli
repeate

reli did not change
Return: (reli,Ri)

4

20 / 30

Response Time Analysis with Dependencies

PE2

PE1

PE0
τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

1 Start with initial release dates.

2 Compute response times

... a fixed-point is reached!

3 Update the release dates.

4 Repeat until no release date changes

(another fixed-point iteration).

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

1 initial reli

initial rel 0
i

Rl+1
i 6= Rl

i

2

Rl+1
i 6= Rl

i

Update release dates
for all i do

reli ← latest finish time of all the
dependencies
end for

3

Ri

2

Ri
new reli
repeat

4

new reli
repeate

reli did not change
Return: (reli,Ri)

4

20 / 30

Response Time Analysis with Dependencies

PE2

PE1

PE0
τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

1 Start with initial release dates.

2 Compute response times

... a fixed-point is reached!
3 Update the release dates.

4 Repeat until no release date changes

(another fixed-point iteration).

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

1 initial reli

initial rel 0
i

Rl+1
i 6= Rl

i

2

Rl+1
i 6= Rl

i

Update release dates
for all i do

reli ← latest finish time of all the
dependencies
end for

3

Ri

2

Ri

new reli
repeat

4

new reli
repeate

reli did not change
Return: (reli,Ri)

4

20 / 30

Response Time Analysis with Dependencies

PE2

PE1

PE0

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

1 Start with initial release dates.

2 Compute response times

... a fixed-point is reached!
3 Update the release dates.

4 Repeat until no release date changes

(another fixed-point iteration).

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

1 initial reli

initial rel 0
i

Rl+1
i 6= Rl

i

2

Rl+1
i 6= Rl

i

Update release dates
for all i do

reli ← latest finish time of all the
dependencies
end for

3

Ri

2

Ri
new reli
repeat

4

new reli
repeate

reli did not change
Return: (reli,Ri)

4

20 / 30

Response Time Analysis with Dependencies

PE2

PE1

PE0

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

1 Start with initial release dates.

2 Compute response times

... a fixed-point is reached!
3 Update the release dates.

4 Repeat until no release date changes

(another fixed-point iteration).

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

1 initial reli

initial rel 0
i

Rl+1
i 6= Rl

i

2

Rl+1
i 6= Rl

i

Update release dates
for all i do

reli ← latest finish time of all the
dependencies
end for

3

Ri

2

Ri

new reli
repeat

4

new reli
repeate

reli did not change
Return: (reli,Ri)

4

20 / 30

Proof of Convergence Toward a Fixed-point

PE2

PE1

PE0

t t
final release date

t
final release date

t
final release date

t
final release date

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

◦ Convergence of the 1st fixed-point iteration:

◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:

◦ no monotonicity: Ri and reli may grow or shrink at
each iteration. ?

Theorem
At each iteration, at least one task finds its final release date.

Full proof in our technical report:
http://www-verimag.imag.fr/TR/TR-2016-1.pdf

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

initial rel 0
i Rl+1

i 6= Rl
i

Rl+1
i 6= Rl

i

Update release dates
for all i do
reli ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new reli
repeat

new reli
repeate

reli did not change
Return: (reli,Ri)

21 / 30

http://www-verimag.imag.fr/TR/TR-2016-1.pdf

Proof of Convergence Toward a Fixed-point

PE2

PE1

PE0

t t
final release date

t
final release date

t
final release date

t
final release date

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

◦ Convergence of the 1st fixed-point iteration:

◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:

◦ no monotonicity: Ri and reli may grow or shrink at
each iteration. ?

Theorem
At each iteration, at least one task finds its final release date.

Full proof in our technical report:
http://www-verimag.imag.fr/TR/TR-2016-1.pdf

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

initial rel 0
i Rl+1

i 6= Rl
i

Rl+1
i 6= Rl

i

Update release dates
for all i do
reli ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new reli
repeat

new reli
repeate

reli did not change
Return: (reli,Ri)

21 / 30

http://www-verimag.imag.fr/TR/TR-2016-1.pdf

Proof of Convergence Toward a Fixed-point

PE2

PE1

PE0

t t
final release date

t
final release date

t
final release date

t
final release date

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

◦ Convergence of the 1st fixed-point iteration:

◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:

◦ no monotonicity: Ri and reli may grow or shrink at
each iteration. ?

Theorem
At each iteration, at least one task finds its final release date.

Full proof in our technical report:
http://www-verimag.imag.fr/TR/TR-2016-1.pdf

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

initial rel 0
i

Rl+1
i 6= Rl

i

Rl+1
i 6= Rl

i

Update release dates
for all i do
reli ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new reli
repeat

new reli
repeate

reli did not change
Return: (reli,Ri)

21 / 30

http://www-verimag.imag.fr/TR/TR-2016-1.pdf

Proof of Convergence Toward a Fixed-point

PE2

PE1

PE0

t t
final release date

t
final release date

t
final release date

t
final release date

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

◦ Convergence of the 1st fixed-point iteration:

◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:
◦ no monotonicity: Ri and reli may grow or shrink at

each iteration. ?

Theorem
At each iteration, at least one task finds its final release date.

Full proof in our technical report:
http://www-verimag.imag.fr/TR/TR-2016-1.pdf

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

initial rel 0
i

Rl+1
i 6= Rl

i

Rl+1
i 6= Rl

i

Update release dates
for all i do
reli ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new reli
repeat

new reli
repeate

reli did not change
Return: (reli,Ri)

21 / 30

http://www-verimag.imag.fr/TR/TR-2016-1.pdf

Proof of Convergence Toward a Fixed-point

PE2

PE1

PE0

t t
final release date

t
final release date

t
final release date

t
final release date

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

◦ Convergence of the 1st fixed-point iteration:

◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:
◦ no monotonicity: Ri and reli may grow or shrink at

each iteration. ?

Theorem
At each iteration, at least one task finds its final release date.

Full proof in our technical report:
http://www-verimag.imag.fr/TR/TR-2016-1.pdf

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

initial rel 0
i

Rl+1
i 6= Rl

i

Rl+1
i 6= Rl

i

Update release dates
for all i do
reli ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new reli
repeat

new reli
repeate

reli did not change
Return: (reli,Ri)

21 / 30

http://www-verimag.imag.fr/TR/TR-2016-1.pdf

Proof of Convergence Toward a Fixed-point

PE2

PE1

PE0

t

t
final release date

t
final release date

t
final release date

t
final release date

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

◦ Convergence of the 1st fixed-point iteration:

◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:
◦ no monotonicity: Ri and reli may grow or shrink at

each iteration. ?

Theorem
At each iteration, at least one task finds its final release date.

Full proof in our technical report:
http://www-verimag.imag.fr/TR/TR-2016-1.pdf

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

initial rel 0
i

Rl+1
i 6= Rl

i

Rl+1
i 6= Rl

i

Update release dates
for all i do
reli ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new reli
repeat

new reli
repeate

reli did not change
Return: (reli,Ri)

21 / 30

http://www-verimag.imag.fr/TR/TR-2016-1.pdf

Proof of Convergence Toward a Fixed-point

PE2

PE1

PE0

t

t
final release date

t
final release date

t
final release date

t
final release date

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

◦ Convergence of the 1st fixed-point iteration:

◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:
◦ no monotonicity: Ri and reli may grow or shrink at

each iteration. ?

Theorem
At each iteration, at least one task finds its final release date.

Full proof in our technical report:
http://www-verimag.imag.fr/TR/TR-2016-1.pdf

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

initial rel 0
i

Rl+1
i 6= Rl

i

Rl+1
i 6= Rl

i

Update release dates
for all i do
reli ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new reli
repeat

new reli
repeate

reli did not change
Return: (reli,Ri)

21 / 30

http://www-verimag.imag.fr/TR/TR-2016-1.pdf

Proof of Convergence Toward a Fixed-point

PE2

PE1

PE0

t t
final release date

t
final release date

t
final release date

t
final release date

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

◦ Convergence of the 1st fixed-point iteration:

◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:
◦ no monotonicity: Ri and reli may grow or shrink at

each iteration. ?

Theorem
At each iteration, at least one task finds its final release date.

Full proof in our technical report:
http://www-verimag.imag.fr/TR/TR-2016-1.pdf

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

initial rel 0
i

Rl+1
i 6= Rl

i

Rl+1
i 6= Rl

i

Update release dates
for all i do
reli ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new reli
repeat

new reli
repeate

reli did not change
Return: (reli,Ri)

21 / 30

http://www-verimag.imag.fr/TR/TR-2016-1.pdf

Proof of Convergence Toward a Fixed-point

PE2

PE1

PE0

t t
final release date

t
final release date

t
final release date

t
final release date

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

◦ Convergence of the 1st fixed-point iteration:

◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:
◦ no monotonicity: Ri and reli may grow or shrink at

each iteration. ?

Theorem
At each iteration, at least one task finds its final release date.

Full proof in our technical report:
http://www-verimag.imag.fr/TR/TR-2016-1.pdf

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

initial rel 0
i

Rl+1
i 6= Rl

i

Rl+1
i 6= Rl

i

Update release dates
for all i do
reli ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new reli
repeat

new reli
repeate

reli did not change
Return: (reli,Ri)

21 / 30

http://www-verimag.imag.fr/TR/TR-2016-1.pdf

Proof of Convergence Toward a Fixed-point

PE2

PE1

PE0

t t
final release date

t
final release date

t
final release date

t
final release date

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

◦ Convergence of the 1st fixed-point iteration:

◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:
◦ no monotonicity: Ri and reli may grow or shrink at

each iteration. ?

Theorem
At each iteration, at least one task finds its final release date.

Full proof in our technical report:
http://www-verimag.imag.fr/TR/TR-2016-1.pdf

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

initial rel 0
i

Rl+1
i 6= Rl

i

Rl+1
i 6= Rl

i

Update release dates
for all i do
reli ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new reli
repeat

new reli
repeate

reli did not change
Return: (reli,Ri)

21 / 30

http://www-verimag.imag.fr/TR/TR-2016-1.pdf

Outline

1 Critical, Real-Time and Many-Core

2 Parallel code generation and analysis

3 Models Definition

4 Multicore Response Time Analysis of SDF Programs

5 Evaluation

6 Conclusion and Future Work

7 A new compilation team in Lyon (LIP) ?

22 / 30

Evaluation: ROSACE Case Study1

va_filter
(100Hz)

q_filter
(100Hz)

vz_filter
(100Hz)

az_filter
(100Hz)

h_filter
(100Hz)

altitude
(50Hz)

vz_control
(50Hz)

va_control
(50Hz)va (200Hz)

q (200Hz)

vz (200Hz)

az (200Hz)

h (200Hz)

δec

δthe

Rx

Tx

P4

P3

P2

P1

P0 va_filter

100 Hz

va_control

50 Hz

va_filter

100 Hz

q_filter

100 Hz

q_filter

100 Hz

vz_filter

100 Hz

vz_filter

100 Hz

az_filter

100 Hz

az_filter

100 Hz

h_filter

100 Hz

altitude
50 Hz

vz_control

50 Hz

h_filter

100 Hz

transmit
50 Hz

receive
200 Hz

receive
200 Hz

receive
200 Hz

receive
200 Hz

Hyper-period

◦ Flight management system controller

◦ Receive from sensors and transmit to actuators
◦ Assumptions:

Tasks are mapped on 5 cores
Debug Support Unit is disabled
Context switches are over-approximated constants

1 Pagetti et al., RTAS 2014
23 / 30

Evaluation: ROSACE Case Study1

va_filter
(100Hz)

q_filter
(100Hz)

vz_filter
(100Hz)

az_filter
(100Hz)

h_filter
(100Hz)

altitude
(50Hz)

vz_control
(50Hz)

va_control
(50Hz)va (200Hz)

q (200Hz)

vz (200Hz)

az (200Hz)

h (200Hz)

δec

δthe

Rx

Tx

P4

P3

P2

P1

P0 va_filter

100 Hz

va_control

50 Hz

va_filter

100 Hz

q_filter

100 Hz

q_filter

100 Hz

vz_filter

100 Hz

vz_filter

100 Hz

az_filter

100 Hz

az_filter

100 Hz

h_filter

100 Hz

altitude
50 Hz

vz_control

50 Hz

h_filter

100 Hz

transmit
50 Hz

receive
200 Hz

receive
200 Hz

receive
200 Hz

receive
200 Hz

Hyper-period

◦ Flight management system controller
◦ Receive from sensors and transmit to actuators

◦ Assumptions:
Tasks are mapped on 5 cores
Debug Support Unit is disabled
Context switches are over-approximated constants

1 Pagetti et al., RTAS 2014
23 / 30

Evaluation: ROSACE Case Study1

va_filter
(100Hz)

q_filter
(100Hz)

vz_filter
(100Hz)

az_filter
(100Hz)

h_filter
(100Hz)

altitude
(50Hz)

vz_control
(50Hz)

va_control
(50Hz)va (200Hz)

q (200Hz)

vz (200Hz)

az (200Hz)

h (200Hz)

δec

δthe

Rx

Tx

P4

P3

P2

P1

P0 va_filter

100 Hz

va_control

50 Hz

va_filter

100 Hz

q_filter

100 Hz

q_filter

100 Hz

vz_filter

100 Hz

vz_filter

100 Hz

az_filter

100 Hz

az_filter

100 Hz

h_filter

100 Hz

altitude
50 Hz

vz_control

50 Hz

h_filter

100 Hz

transmit
50 Hz

receive
200 Hz

receive
200 Hz

receive
200 Hz

receive
200 Hz

Hyper-period

◦ Flight management system controller
◦ Receive from sensors and transmit to actuators
◦ Assumptions:

Tasks are mapped on 5 cores
Debug Support Unit is disabled
Context switches are over-approximated constants

1 Pagetti et al., RTAS 2014
23 / 30

Evaluation: ROSACE Case Study1

va_filter
(100Hz)

q_filter
(100Hz)

vz_filter
(100Hz)

az_filter
(100Hz)

h_filter
(100Hz)

altitude
(50Hz)

vz_control
(50Hz)

va_control
(50Hz)va (200Hz)

q (200Hz)

vz (200Hz)

az (200Hz)

h (200Hz)

δec

δthe

Rx

Tx

P4

P3

P2

P1

P0 va_filter

100 Hz

va_control

50 Hz

va_filter

100 Hz

q_filter

100 Hz

q_filter

100 Hz

vz_filter

100 Hz

vz_filter

100 Hz

az_filter

100 Hz

az_filter

100 Hz

h_filter

100 Hz

altitude
50 Hz

vz_control

50 Hz

h_filter

100 Hz

transmit
50 Hz

receive
200 Hz

receive
200 Hz

receive
200 Hz

receive
200 Hz

Hyper-period

◦ Flight management system controller
◦ Receive from sensors and transmit to actuators
◦ Assumptions:

Tasks are mapped on 5 cores
Debug Support Unit is disabled
Context switches are over-approximated constants

1 Pagetti et al., RTAS 2014
23 / 30

Evaluation: ROSACE Case Study

Task Processor Demand (cycles) Memory Demand (accesses)
altitude 275 22
az_filter 274 22
h_filter 326 24

va_control 303 24
va_filter 301 23
vz_control 320 25
vz_filter 334 25

Table: Task profiles of the FMS controller

◦ Profile obtained from measurements

◦ Memory Demand: data and instruction cache misses + communications
◦ Moreover:

◦ NoC Rx : writes 5 words
◦ NoC Tx : reads 2 words

Experiments: Find the smallest schedulable hyper-period

24 / 30

Evaluation: ROSACE Case Study

Task Processor Demand (cycles) Memory Demand (accesses)
altitude 275 22
az_filter 274 22
h_filter 326 24

va_control 303 24
va_filter 301 23
vz_control 320 25
vz_filter 334 25

Table: Task profiles of the FMS controller

◦ Profile obtained from measurements
◦ Memory Demand: data and instruction cache misses + communications

◦ Moreover:
◦ NoC Rx : writes 5 words
◦ NoC Tx : reads 2 words

Experiments: Find the smallest schedulable hyper-period

24 / 30

Evaluation: ROSACE Case Study

Task Processor Demand (cycles) Memory Demand (accesses)
altitude 275 22
az_filter 274 22
h_filter 326 24

va_control 303 24
va_filter 301 23
vz_control 320 25
vz_filter 334 25

Table: Task profiles of the FMS controller

◦ Profile obtained from measurements
◦ Memory Demand: data and instruction cache misses + communications
◦ Moreover:

◦ NoC Rx : writes 5 words
◦ NoC Tx : reads 2 words

Experiments: Find the smallest schedulable hyper-period

24 / 30

Evaluation: ROSACE Case Study

Task Processor Demand (cycles) Memory Demand (accesses)
altitude 275 22
az_filter 274 22
h_filter 326 24

va_control 303 24
va_filter 301 23
vz_control 320 25
vz_filter 334 25

Table: Task profiles of the FMS controller

◦ Profile obtained from measurements
◦ Memory Demand: data and instruction cache misses + communications
◦ Moreover:

◦ NoC Rx : writes 5 words
◦ NoC Tx : reads 2 words

Experiments: Find the smallest schedulable hyper-period

24 / 30

Evaluation: Experiments

memory access pattern memory access pattern

1 bank 5 banks

0

4000

8000

12000

16000

MPPA RR MPPA RR
Bus Policy

P
ro

ce
ss

or
 c

yc
le

s

E5: Pessimistic
E4: 1−Phase (w/o release)
E3: 2−Phase (w/o release)
E2: 1−Phase
E1: 2−Phase

Smallest schedulable hyper-period

◦ Phases are modeled as
sub-tasks

2-Phase model1-Phase model

E5: All accesses interfere
E4, E3: We don’t use
the release dates

E2, E1: Our approach.
We use the release dates

25 / 30

Evaluation: Experiments

memory access pattern memory access pattern

1 bank 5 banks

0

4000

8000

12000

16000

MPPA RR MPPA RR
Bus Policy

P
ro

ce
ss

or
 c

yc
le

s

E5: Pessimistic
E4: 1−Phase (w/o release)
E3: 2−Phase (w/o release)
E2: 1−Phase
E1: 2−Phase

Smallest schedulable hyper-period

◦ Phases are modeled as
sub-tasks

2-Phase model1-Phase model

E5: All accesses interfere

E4, E3: We don’t use
the release dates

E2, E1: Our approach.
We use the release dates

25 / 30

Evaluation: Experiments

memory access pattern memory access pattern

1 bank 5 banks

0

4000

8000

12000

16000

MPPA RR MPPA RR
Bus Policy

P
ro

ce
ss

or
 c

yc
le

s

E5: Pessimistic
E4: 1−Phase (w/o release)
E3: 2−Phase (w/o release)
E2: 1−Phase
E1: 2−Phase

Smallest schedulable hyper-period

◦ Phases are modeled as
sub-tasks

2-Phase model1-Phase model

E5: All accesses interfere
E4, E3: We don’t use
the release dates

E2, E1: Our approach.
We use the release dates

25 / 30

Evaluation: Experiments

memory access pattern memory access pattern

1 bank 5 banks

0

4000

8000

12000

16000

MPPA RR MPPA RR
Bus Policy

P
ro

ce
ss

or
 c

yc
le

s

E5: Pessimistic
E4: 1−Phase (w/o release)
E3: 2−Phase (w/o release)
E2: 1−Phase
E1: 2−Phase

Smallest schedulable hyper-period

◦ Phases are modeled as
sub-tasks

2-Phase model1-Phase model

E5: All accesses interfere
E4, E3: We don’t use
the release dates

E2, E1: Our approach.
We use the release dates

25 / 30

Evaluation: Experiments

memory access pattern memory access pattern

1 bank 5 banks

0

4000

8000

12000

16000

MPPA RR MPPA RR
Bus Policy

P
ro

ce
ss

or
 c

yc
le

s

E5: Pessimistic
E4: 1−Phase (w/o release)
E3: 2−Phase (w/o release)
E2: 1−Phase
E1: 2−Phase

Smallest schedulable hyper-period

◦ Phases are modeled as
sub-tasks

2-Phase model1-Phase model

E5: All accesses interfere
E4, E3: We don’t use
the release dates

E2, E1: Our approach.
We use the release dates

25 / 30

Evaluation: Experiments
Taking into account the memory banks improves the analysis with a factor in [1.77,2.52]

1 bank 5 banks

0

4000

8000

12000

16000

MPPA RR MPPA RR
Bus Policy

P
ro

ce
ss

or
 c

yc
le

s

E5: Pessimistic
E4: 1−Phase (w/o release)
E3: 2−Phase (w/o release)
E2: 1−Phase
E1: 2−Phase

Smallest schedulable hyper-period

C
o
n
si

st

en
t *

Complete

* W
e
ll d

o
cu

m
ented * Easy to

 re
u
se

 *
 * E

valuate

d

*

 R
TN

S
 *

Artifact

E5/E1 E5/E2 E3/E1 E4/E2 E2/E1 E4/E3
MPPA 4.15 4.12 1.68 1.29 ∼1.01 0.77

RR 3.3 3.29 1.24 1.13 ∼1.01 0.91

Speedup factors

26 / 30

Evaluation: Experiments
Taking into account the memory banks improves the analysis with a factor in [1.77,2.52]

1 bank 5 banks

0

4000

8000

12000

16000

MPPA RR MPPA RR
Bus Policy

P
ro

ce
ss

or
 c

yc
le

s

E5: Pessimistic
E4: 1−Phase (w/o release)
E3: 2−Phase (w/o release)
E2: 1−Phase
E1: 2−Phase

Smallest schedulable hyper-period

C
o
n
si

st

en
t *

Complete

* W
e
ll d

o
cu

m
ented * Easy to

 re
u
se

 *
 * E

valuate

d

*

 R
TN

S
 *

Artifact

E5/E1 E5/E2 E3/E1 E4/E2 E2/E1 E4/E3
MPPA 4.15 4.12 1.68 1.29 ∼1.01 0.77

RR 3.3 3.29 1.24 1.13 ∼1.01 0.91

Speedup factors

26 / 30

Evaluation: Experiments
Taking into account the memory banks improves the analysis with a factor in [1.77,2.52]

1 bank 5 banks

0

4000

8000

12000

16000

MPPA RR MPPA RR
Bus Policy

P
ro

ce
ss

or
 c

yc
le

s

E5: Pessimistic
E4: 1−Phase (w/o release)
E3: 2−Phase (w/o release)
E2: 1−Phase
E1: 2−Phase

Smallest schedulable hyper-period

C
o
n
si

st

en
t *

Complete

* W
e
ll d

o
cu

m
ented * Easy to

 re
u
se

 *
 * E

valuate

d

*

 R
TN

S
 *

Artifact

E5/E1 E5/E2 E3/E1 E4/E2 E2/E1 E4/E3
MPPA 4.15 4.12 1.68 1.29 ∼1.01 0.77

RR 3.3 3.29 1.24 1.13 ∼1.01 0.91

Speedup factors

26 / 30

Evaluation: Experiments
Taking into account the memory banks improves the analysis with a factor in [1.77,2.52]

1 bank 5 banks

0

4000

8000

12000

16000

MPPA RR MPPA RR
Bus Policy

P
ro

ce
ss

or
 c

yc
le

s

E5: Pessimistic
E4: 1−Phase (w/o release)
E3: 2−Phase (w/o release)
E2: 1−Phase
E1: 2−Phase

Smallest schedulable hyper-period

C
o
n
si

st

en
t *

Complete

* W
e
ll d

o
cu

m
ented * Easy to

 re
u
se

 *
 * E

valuate

d

*

 R
TN

S
 *

Artifact

E5/E1 E5/E2 E3/E1 E4/E2 E2/E1 E4/E3
MPPA 4.15 4.12 1.68 1.29 ∼1.01 0.77

RR 3.3 3.29 1.24 1.13 ∼1.01 0.91

Speedup factors

26 / 30

Evaluation: Experiments
Taking into account the memory banks improves the analysis with a factor in [1.77,2.52]

1 bank 5 banks

0

4000

8000

12000

16000

MPPA RR MPPA RR
Bus Policy

P
ro

ce
ss

or
 c

yc
le

s

E5: Pessimistic
E4: 1−Phase (w/o release)
E3: 2−Phase (w/o release)
E2: 1−Phase
E1: 2−Phase

Smallest schedulable hyper-period

C
o
n
si

st

en
t *

Complete

* W
e
ll d

o
cu

m
ented * Easy to

 re
u
se

 *
 * E

valuate

d

*

 R
TN

S
 *

Artifact

E5/E1 E5/E2 E3/E1 E4/E2 E2/E1 E4/E3
MPPA 4.15 4.12 1.68 1.29 ∼1.01 0.77

RR 3.3 3.29 1.24 1.13 ∼1.01 0.91

Speedup factors

26 / 30

Evaluation: Experiments
Taking into account the memory banks improves the analysis with a factor in [1.77,2.52]

1 bank 5 banks

0

4000

8000

12000

16000

MPPA RR MPPA RR
Bus Policy

P
ro

ce
ss

or
 c

yc
le

s

E5: Pessimistic
E4: 1−Phase (w/o release)
E3: 2−Phase (w/o release)
E2: 1−Phase
E1: 2−Phase

Smallest schedulable hyper-period

C
o
n
si

st

en
t *

Complete

* W
e
ll d

o
cu

m
ented * Easy to

 re
u
se

 *
 * E

valuate

d

*

 R
TN

S
 *

Artifact

E5/E1 E5/E2 E3/E1 E4/E2 E2/E1 E4/E3
MPPA 4.15 4.12 1.68 1.29 ∼1.01 0.77

RR 3.3 3.29 1.24 1.13 ∼1.01 0.91

Speedup factors

26 / 30

Outline

1 Critical, Real-Time and Many-Core

2 Parallel code generation and analysis

3 Models Definition

4 Multicore Response Time Analysis of SDF Programs

5 Evaluation

6 Conclusion and Future Work

7 A new compilation team in Lyon (LIP) ?

27 / 30

Conclusion

◦ Code generation and real-time analysis for many-core (Kalray MPPA 256)
= major challenge for industry and research

◦ Hard Real-Time ⇒ simplicity, predictability ⇒ static, time-driven schedule
◦ Critical ⇒ traceability ⇒ no aggressive optimization
◦ Our work:

◦ Understand and model the precise architecture of MPPA
◦ Extension of Multi-Core Response Time Analysis
◦ Non-trivial proof of termination

28 / 30

Future Work

◦ Model of the Resource Manager.

◦ Model of the NoC accesses.

◦ Memory access pipelining.

◦ Model Blocking and non-blocking accesses.

tighter estimation of
context switches and
other interrupts

use the output of
any NoC analysis

current assumption:
bus delay is 10 cycles

reads are blocking
writes are non-blocking

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

Questions?

29 / 30

Future Work

◦ Model of the Resource Manager.

◦ Model of the NoC accesses.

◦ Memory access pipelining.

◦ Model Blocking and non-blocking accesses.

tighter estimation of
context switches and
other interrupts

use the output of
any NoC analysis

current assumption:
bus delay is 10 cycles

reads are blocking
writes are non-blocking

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

Questions?

29 / 30

Future Work

◦ Model of the Resource Manager.

◦ Model of the NoC accesses.

◦ Memory access pipelining.

◦ Model Blocking and non-blocking accesses.

tighter estimation of
context switches and
other interrupts

use the output of
any NoC analysis

current assumption:
bus delay is 10 cycles

reads are blocking
writes are non-blocking

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

Questions?

29 / 30

Future Work

◦ Model of the Resource Manager.

◦ Model of the NoC accesses.

◦ Memory access pipelining.

◦ Model Blocking and non-blocking accesses.

tighter estimation of
context switches and
other interrupts

use the output of
any NoC analysis

current assumption:
bus delay is 10 cycles

reads are blocking
writes are non-blocking

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

Questions?

29 / 30

Future Work

◦ Model of the Resource Manager.

◦ Model of the NoC accesses.

◦ Memory access pipelining.

◦ Model Blocking and non-blocking accesses.

tighter estimation of
context switches and
other interrupts

use the output of
any NoC analysis

current assumption:
bus delay is 10 cycles

reads are blocking
writes are non-blocking

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

Questions?

29 / 30

Future Work

◦ Model of the Resource Manager.

◦ Model of the NoC accesses.

◦ Memory access pipelining.

◦ Model Blocking and non-blocking accesses.

tighter estimation of
context switches and
other interrupts

use the output of
any NoC analysis

current assumption:
bus delay is 10 cycles

reads are blocking
writes are non-blocking

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

Questions?

29 / 30

Future Work

◦ Model of the Resource Manager.

◦ Model of the NoC accesses.

◦ Memory access pipelining.

◦ Model Blocking and non-blocking accesses.

tighter estimation of
context switches and
other interrupts

use the output of
any NoC analysis

current assumption:
bus delay is 10 cycles

reads are blocking
writes are non-blocking

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

Questions?

29 / 30

Future Work

◦ Model of the Resource Manager.

◦ Model of the NoC accesses.

◦ Memory access pipelining.

◦ Model Blocking and non-blocking accesses.

tighter estimation of
context switches and
other interrupts

use the output of
any NoC analysis

current assumption:
bus delay is 10 cycles

reads are blocking
writes are non-blocking

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

Questions?

29 / 30

Future Work

◦ Model of the Resource Manager.

◦ Model of the NoC accesses.

◦ Memory access pipelining.

◦ Model Blocking and non-blocking accesses.

tighter estimation of
context switches and
other interrupts

use the output of
any NoC analysis

current assumption:
bus delay is 10 cycles

reads are blocking
writes are non-blocking

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh

ar
ed

m
em

or
y

ba
nk

s 8
shared

m
em

ory
banks

Questions?

29 / 30

Outline

1 Critical, Real-Time and Many-Core

2 Parallel code generation and analysis

3 Models Definition

4 Multicore Response Time Analysis of SDF Programs

5 Evaluation

6 Conclusion and Future Work

7 A new compilation team in Lyon (LIP) ?

30 / 30

Compilation and
Analysis for
Software and
Hardware

Program

HPC data-intensive
application

Analyses Code generation

FPGA

General-purpose
platforms

Polyhedral
Model

Dataflow
semantics

Simulation
Abstract

Interpretation
High-Level
Synthesis

L. Gonnord, M. Moy

C. AliasL. Gonnord, M. Moy,
C. Alias

M. Moy

L. Gonnord, C. Alias

M. Moy, C. Alias, L. Gonnord

C. Alias, M. Moy

Matthieu Moy and Christophe Alias and Laure Gonnord 8 / 8

BACKUP

Multicore Response Time Analysis

Example: Fixed Priority bus arbiter, PE1 > PE0
Bus access delay = 10

t

PE0

PE1

00 40 80 120 160

2 accesses 2 accesses

T1

2 accesses

T1

2 accesses

T1 T1

3 accesses

T0

3 accesses

Response time

1Altmeyer et al., RTNS 2015

Multicore Response Time Analysis

Example: Fixed Priority bus arbiter, PE1 > PE0
Bus access delay = 10

t

PE0

PE1

00 40 80 120 160

2 accesses 2 accesses

T1

2 accesses

T1

2 accesses

T1 T1

3 accesses

T0

3 accesses

Response time

◦ Task of interest running on PE0:
R0 = 10 + 3×10 (response time in isolation)

R1 = 10 + 3×10 + 2×10 = 60

R2 = 10 + 3×10 + 2×10 + 2×10 = 80

R3 = 10 + 3×10 + 2×10 + 2×10 + 0 = 80 (fixed-point)

1Altmeyer et al., RTNS 2015

Multicore Response Time Analysis

Example: Fixed Priority bus arbiter, PE1 > PE0
Bus access delay = 10

t

PE0

PE1

00 40 80 120 160

2 accesses 2 accesses

T1

2 accesses

T1

2 accesses

T1 T1

3 accesses

T0

3 accesses

Response time

◦ Task of interest running on PE0:
R0 = 10 + 3×10 (response time in isolation)
R1 = 10 + 3×10 + 2×10 = 60

R2 = 10 + 3×10 + 2×10 + 2×10 = 80

R3 = 10 + 3×10 + 2×10 + 2×10 + 0 = 80 (fixed-point)

1Altmeyer et al., RTNS 2015

Multicore Response Time Analysis

Example: Fixed Priority bus arbiter, PE1 > PE0
Bus access delay = 10

t

PE0

PE1

00 40 80 120 160

2 accesses 2 accesses

T1

2 accesses

T1

2 accesses

T1 T1

3 accesses

T0

3 accesses

Response time

◦ Task of interest running on PE0:
R0 = 10 + 3×10 (response time in isolation)
R1 = 10 + 3×10 + 2×10 = 60

R2 = 10 + 3×10 + 2×10 + 2×10 = 80

R3 = 10 + 3×10 + 2×10 + 2×10 + 0 = 80 (fixed-point)

1Altmeyer et al., RTNS 2015

Multicore Response Time Analysis

Example: Fixed Priority bus arbiter, PE1 > PE0
Bus access delay = 10

t

PE0

PE1

00 40 80 120 160

2 accesses 2 accesses

T1

2 accesses

T1

2 accesses

T1 T1

3 accesses

T0

3 accesses

Response time

◦ Task of interest running on PE0:
R0 = 10 + 3×10 (response time in isolation)
R1 = 10 + 3×10 + 2×10 = 60

R2 = 10 + 3×10 + 2×10 + 2×10 = 80

R3 = 10 + 3×10 + 2×10 + 2×10 + 0 = 80 (fixed-point)

1Altmeyer et al., RTNS 2015

The Global Picture

Static
Mapping/Scheduling

WCRT with
Interferences

Local WCRT
Analysis

Timing models
(static analysis)

Probabilistic
Models

High-level
Program

+

Executable Binary

Binary Generation

Code Generation

Dependencies

Tasks

Mapping

Execution
Order

Release
Dates

+
Tasks WCRT

WC Access

	Critical, Real-Time and Many-Core
	Parallel code generation and analysis
	Models Definition
	Multicore Response Time Analysis of SDF Programs
	Evaluation
	Conclusion and Future Work
	A new compilation team in Lyon (LIP) ?
	Appendix

