
Implementing Powerlists with
Bulk Synchronous Parallel ML

Frédéric Loulergue∗, Virginia Niculescu†, Julien Tesson‡
∗Univ Orléans, INSA Centre Val de Loire, LIFO EA 4022, Orléans, France,

Frederic.Loulergue@univ-orleans.fr
†Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania

vniculescu@cs.ubbcluj.ro
‡Université Paris Est Créteil, LACL, Créteil, France

Julien.Tesson@lacl.fr

Abstract—Tools and methods able to simplify the development
process of parallel software, but also to assure a high level
of performance and robustness, are necessary. Powerlists and
their variants are data structures that can be successfully used
in a simple, provably correct, functional description of parallel
programs, which are divide-and-conquer in nature. The paper
presents how programs defined based on powerlists could be
implemented in the functional language OCaml plus calls to
the parallel functional programming library Bulk Synchronous
Parallel ML. BSML functions follow the BSP model requirements,
and so its advantages are introduced in OCaml parallel code. In
order to write powerlist programs in BSML we provide a data-
type for powerlists and a set of skeletons (higher-order functions
implemented in parallel) to manipulate them. Examples are given
and concrete experiments for their executions are conducted.

Keywords—Parallel recursive structures; Functional parallel
programming; Bulk synchronous parallelism

I. CONTEXT AND MOTIVATION

The latest developments of the computation systems lead
to an increase of the requirements in using parallel compu-
tation. Still, for many years, parallel computation has been
considered difficult and error-prone. This imposes using tools
and methodologies able to simplify the development process of
parallel software, but also to assure a high level of performance
and robustness.

This calls for a strongly structured form of parallelism [1],
[2], [3], which should not only be based on an abstraction
or model that conceals much of the complexity of parallel
computation, but also provide a systematic way of developing
such parallelism from specifications for practically nontrivial
examples. Since correctness is very important in this context,
high-level algebraic theories are appropriate to be used as
fundamentals. Among them at least two seem suitable for
parallel programming: the theory of lists [4] and parallel
recursive structures such as powerlists [5].

Powerlists and their variants are data structures that can
be successfully used in a simple, provably correct, functional
description of parallel programs, which are divide and conquer
in nature [5], [6]. For each data structure, theories based on
algebras and structural induction principles have been speci-
fied, which make them well suited to formally define recursive,
data-parallel algorithms. These theories can be considered

together a base for a model of parallel computation with a
very high level of abstraction [7].

In order to be useful, a model of parallel computation must
also address very carefully issues such as efficient implementa-
tion and costs evaluation. BSP model [2] is famous especially
because it provides a very accurate cost analysis, and a rigorous
development that could provide robustness. From these, the
idea of using BSP development methodology in the process of
implementing powerlists programs came natural.

Powerlist programs are defined in a very high-level way.
While their divide-and-conquer nature makes them suitable
for parallelism, providing an efficient implementation that
preseves a high-level style is not an easy task. A full framework
for the development of parallel programs using powerlists
should provide a way for a user to simply express his/her
algorithms in a high-level way, and transformations to obtain
more efficient versions of the programs. Actually using the
powerlist algebraic properties, Achatz et al. [8] proposed a
method to do so, with the aim of running the optimised
versions of powerlists programs on SIMD architectures. Their
method transforms programs written using a set of input
patterns (or skeletons) into equivalent programs using a set of
output patterns. The output patterns are more efficient to run
on SIMD architectures than the input patterns. While Achatz
et al. transformations are “pen-and-paper” transformations, and
thus error prone, our ultimate goal is to automate variants of
these transformations in the Coq proof assistant [9], to be able
to extract functional parallel programs.

In order to do so, we need to have a set of output patterns
written in a parallel functional parallel language that could be
a target of Coq extraction mechanism: OCaml [10], [11] plus
calls to the parallel functional programming library Bulk Syn-
chronous Parallel ML (BSML) [12] is such a language [13].
BSML functions follow the BSP model requirements, and so
its advantages are introduced in OCaml parallel code. The
design and implementation of a set of such output patterns
(or skeletons) is the contribution of this paper.

The paper is organised as follows. We give first a general
description of the powerlists in section II, and on BSML
(section III) before discussing how powerlists programs could
be implemented in BSML (section IV). Section V presents
some applications and the experiments related to them. Related
work (section VI) and also our goals for the future work are

presented before giving the conclusions (section VII).

The paper assumes some familiarity with statically
typed higher-order functional programming language such as
Haskell, SML or OCaml. A concise introduction to OCaml
is [14].

II. POWERLISTS

Powerlist data structures were introduced by J. Misra [5],
and they allow working at a high level of abstraction, especially
because the index notations are not used. To assure methods
that verify the correctness of parallel programs, an algebra
and structural induction principles are defined on these data
structures. The functions and the operators, which represent
the parallel programs, are defined on these structures based on
corresponding structural induction principles.

A powerlist is a linear data structure whose elements are
all of the same type. The length of a powerlist data structure
is a power of two. The type constructor for powerlist is:

powerlist : Type× N→ Type

and so, a powerlist l with 2n elements of type X is specified
by powerlist.X.n (where n = log (length l), and the real
length of l is 2n). A powerlist with a single element a is called
a singleton, and is denoted by [a] . If two powerlist structures
have the same length and elements of the same type, they are
called similar.

Two similar powerlists can be combined into a powerlist
data structure with double length, in two different ways: using
the operator tie p | q; the result contains elements from p
followed by elements from q; using the operator zip p \ q; the
result contains elements from p and q, alternatively taken.

Powerlist algebra is defined by operators and axioms,
and the existence of unique decomposition of a powerlist,
using one of tie or zip operators, is assured. A structural
induction principle is defined on powerlist data structures,
which consider a base case, and two possible variants for the
inductive step: one based on operator tie, and the other based
on zip.

For example, the high order function map, which applies
a scalar function to each element of a powerlist is defined as
follows:

map : (X → Z)× powerlist.X.n→ powerlist.Z.n
map f [a] = [f a]
map f (p | q) = map f p |map f q

Function inv permutes the input list p such that the element
with index b in p will be on the position given by the reversal
of bit string b in p:

inv : powerlist.X.n→ powerlist.X.n
inv [a] = [a]
inv (p | q) = inv p \ inv q

The parallelism of the functions is implicit: each application
of a deconstruction operator (zip or tie) means that we may
achieve two processes (programs) that could run in parallel.
So, we obtain a tree decomposition, which is specific to
divide&conquer programs.

Having two decomposition operators eases the definition
of different programs (as can be noticed from inv definition),
but in the same time induces some problems when these high-
level programs have to be implemented on concrete parallel
machines.

In [8] Achatz and Schulte present transformation rules
to parallelize divide-and-conquer (DC) algorithms over pow-
erlists. Their goal was to derive programs for the massively
data parallel model. The rules convert the parallel multiple
control structure of DC into a single control flow structure,
thereby making the implicit massive data parallelism in a
DC scheme explicit. The transformations use some predefined
functions and operators.

The apply-to-all ∗ operator represents parallel application
of a scalar function (that takes one or several arguments)
to each element of one or several powerlist. When there is
only one argument, and one powerlist, ∗ is indeed map.
The function join is used as a specialisation of a parallel
conditional, and functions that exhibit communication patterns:
corr , distL/distR, and inv are used too. The operator # is
used to return the length of a powerlist.

Function join transform a pair of powerlists p, q, having
equal lengths, into a new powerlist, which consists of alternate
slices of p and q each of length n = 2i, 0 ≤ i < log2(#p).
Formally, it is defined by:

join n (p | q)(r | s) = p | s if n = #p
join n (p | q)(r | s) = join n p r | join n q s, if n < #p

The function corr expresses butterfly-like communication
pattern, and distL/distR express directed broadcast. Their
definitions are:

corr n (p | q) = q | p if n = #p
corr n (p | q) = corr n p | corr n q if n < #p
distL n p = copy n (last p) if n = #p
distL n (p | q) = distL n p | distL n q if n < #p

where the function copy returns a powerlist of identical el-
ements. The function distR is similar to distL but operates
from left to right. The function first applied to a powerlist
returns the first element of the powerlist, and the function last
returns the last one.

The function mapn is defined by:

mapn n f p = f p if n = #p
mapn n f (p|q) = mapn n f p | mapn n f q if n ≤ #p

Note that for mapn , contrary to map, f is a function on
powerlists, not on scalars. In the same way ∗ generalises map,
the operator ∗n generalises mapn and may take m powerlists
as arguments if the function f takes m arguments. ∗n is called
the apply-to-slices operator.

The idea presented in [8] is to transform the DC scheme
expressed as a powerlist function f into a data parallel com-
putation, based on tail-recursive computation.

The transformation considers the computation as a top-
down, or as a bottom-up computation. F↓ exhibits top-down,
and F ↑ bottom-up computation, and they represents input
patterns.

Output patterns are represented by F ⇓ and F ⇑ that
describes tail-recursive top-down, resp. bottom-up computation
with pre-adjustment, resp. post-adjustment. F⇑ is defined by

F⇑ δ l r s p = f⇑ #p 1 s p where
f⇑ 1 n s p = p

f⇑ (2m) n s p = f⇑ m (2n) (δs)(join n
((l s) ∗n p q)((r s) ∗n q p))

where q = corr n p, l and r are postadjusting functions and
δ is a function that updates the scalar s at each step.

The correspondence between F↓ resp. F↑ , and F⇓ resp.
F⇑ is established and proved by induction. For example, for
top-down computation we have F↓ | | ≡ F⇓ and expresses the
equivalence between cascading recursion of F↓ | | to the tail-
recursive computation of F ⇓. (The correspondence between
the general patterns F ↑ and F ⇑ is more complicated, but
could be simplified for concrete cases.) because the operator
zip is unnatural when used as a basis for parallelism, the
input patterns are transformed using the inv function, such
that operator zip is replaced by the operator tie.

The general strategy to optimise a function f on powerslits,
is based on the following steps (l and m indicate either a top-
down or bottom-up computation):

1) modify f to match a predefined input named f l;
2) rewrite f l to replace \ by |;
3) parallelise f l to f m based on a parallel application

(the operator ∗n (apply-to-slices) is used);
4) specialise f m to eliminate ∗n;
5) optimise f m to increase parallelism.

The strategy presented by Achatz and Schulte could be very
useful in the process of automatising the implementation of the
powerlists programs. This leads to a framework formed by high
level functions that could be used in the implementation of
each specific powerlist program. More details could be found
in [8].

Example: Prefix sum: One of the most useful building
blocks for parallel programs is the prefix function which takes
a binary, associative operator ⊕ and a list [p0, . . . , pn−1], and
returns a list of all prefix “sums” [p0, p0 ⊕ p1, . . . , p0 ⊕ · · · ⊕
pn−1]. Since the computation is done only in the bottom-up
phase, it could be expressed as:

ps↑ ⊕ [x] = [x]
ps↑ ⊕ (p | q) = v | ((last v)⊕) ∗ w

where(v, w) = (ps↑ ⊕ p, ps↑ ⊕ q)

For transformation, the first two steps are trivially passed, and
finally it is obtained:

ps↑ ⊕ p ≡ ps⇑ #p 1 p where
ps⇑ 1 n p = p

ps⇑ 2m n p = ps⇑ m (2n) (join n p (⊕ ∗ (distLn q) p))
where q = corr n p

III. BULK SYNCHRONOUS PARALLEL ML

Bulk Synchronous Parallel ML or BSML [12], [15], [16]
is an explicit parallel functional language, extension of the
ML family of functional languages. It follows the bulk syn-
chronous parallel model (BSP) that considers a general purpose

computer seen as a distributed memory computer, where the
processor/memory pairs could communicate point-to-point and
be globally synchronised, and where a program is a sequence
of super-steps. A super-step has three phases: (1) computation
with data held in local memories, (2) data exchange that is
ensured only after a (3) global synchronisation.

There is currently no full implementation of BSML as
a language (i.e. with a type system) but there exists an
implementation as a library for the OCaml language, and it is
implemented on top of MPI. BSML follows the flat direct style
BSP programming [17] but is purely functional. It has been
extended with two parallel compositions : juxtaposition [18]
that is impure and offers a way to divide-and-conquer using
subset of processors, and superposition that is pure but has a
different style of divide-and-conquer behaviour. We omit the
latter in this paper.

BSML offers a function (and three constants omitted here)
to access the BSP parameters of the underlying architecture:
bsp_p returns the number of processors in the parallel ma-
chine, it could be less than the actual number of processors if
it is called within a juxtaposition.

BSML operates on a parallel data structure named parallel
vector. Each processor contains one value in the vector. Using
this data structure, BSML offers a global view of parallel
programs, i.e. a program looks like a sequential program
but operates on parallel data structures. It is very different
from the SPMD paradigm were programs are implicit paral-
lel compositions of sequential communication programs. The
global parallel structure of SPMD programs is much harder to
understand than programs that offer a global view.

There is a polymorphic type for parallel vectors: par!.
Each processor thus has to contain a value that has the same
type than the other values in the parallel vectors. Nesting is
forbidden: ’a could not be a parallel type. The type system [15]
rejects programs with such nesting, but this type checking is
not provided in the library implementation. There is no direct
access to individual values in parallel vectors. Manipulation is
done through four functions.

The function mkpar: (int→ ’a)→ ’a par builds a parallel
vector from a function f : at processor i the vector will have
value (f i). For example with 8 processors1:

let r = mkpar (fun i->i+1);;
val r : int par = <1, 2, 3, 4, 5, 6, 7, 8>
let l =

let f i = (i-1+bsp_p()) mod (bsp_p()) in
mkpar f;;

val l : int par = <7, 0, 1, 2, 3, 4, 5, 6>

where # is the prompt of the toplevel, and the answer has
the form name : type = value and in this sequential simulator
parallel vectors are written 〈 a0 , . . . , ap−1 〉.

OCaml is a higher-order language, functions are first class
citizens. It it therefore possible to define parallel vector of
functions. But then, a parallel vector of functions is not
a function. Therefore we need a BSML primitive to apply

1We show here the evaluation of the BSML expression inside the BSML
toplevel or interactive loop

pointwise a parallel vector of functions to a parallel vector of
values. For example:

let vf = mkpar (fun i -> (+) i);;
val vf : (int->int) par = < <fun>, ..., <fun> >
apply vf r;;
- : int par = <1, 3, 5, 7, 9, 11, 13, 15>

mkpar and apply only operate in the computation phase
of a BSP super-step. Communications and implicit global
synchronisations are performed using proj and put.

The function proj: ’a par→ (int→ ’a) is the dual of mkpar.
It creates a function back from a parallel vector. It incurs
communications: it performs an optimised all-to-all commu-
nication. The optimisation comes from the fact that for an
inductive type, the first constructor is considered as the empty
message. For example the empty list is not communicated as it
is considered to represent the empty message. It is not allowed
to evaluate proj inside the scope of the other BSML primitives:
it would be a kind of parallel nesting. The type system [15]
rejects programs with such nesting, but this type checking is
not provided in the current BSML implementation. proj could
be used for example to write a reduce skeleton:

let reduce op vv =
let rec seq =

function [x]->x | x::t->op x (seq t) in
let f = proj vv in
seq (List.map f processors);;

val reduce: (’a->’a->’a)->’a par->’a = <fun>

let sum = reduce (+) r;;
val sum : int = 36

where processors is a list of processors, seq is the sequential
reduction recursively defined by case on lists, and List.map is
a map function on lists from the OCaml standard library.

For more involved communication patterns, one needs
to use the put:(int→ ’a)par→ (int→ ’a)par function. It allows
any local value to be transferred to any other processor. As
proj, it ends the current super-step. Canonical use of put
is put (mkpar (fun src dst→ e)) where expression e computes
(or usually, selects) the data that should be sent (depending
on src) to dst. The return value of put is another vector of
functions. At a processor j the function, when applied to i,
yields the value received from processor i by processor j. For
example, shifting the values of a parallel vector to the right
could be written:

let shift vv =
let msg src v dst =
if dst=(src+1) mod (bsp_p())
then [v] else [] in

let msgs = apply(mkpar msg) vv in
parfun List.hd (apply (put msgs) l);;

shift: ’a par -> ’a par = <fun>
shift (mkpar string_of_int);;
- : string par = <"7", "0", "1", "2",

"3", "4", "5", "6">

where: let parfun f v = apply (mkpar(fun _→ f)) v.

juxta: int→ (unit→ ’a par)→ (unit→ ’a par)→ ’a par is used
to divide the available processors in two parts and evaluate

the given two expressions on each part. Here the expressions
to evaluate are functions as OCaml is a strict language, but
the parameters are just used to delay the evaluation: the only
value of the type unit is (). As we will see in the following
sections, juxta could be used to write divide-and-conquer
algorithms. We just give here a very small example to illustrate
its semantics:

juxta (bsp_p()/2) (fun _->l) (fun _->r);;
- : int par = < 7; 0; 1; 2; 5; 6; 7; 8 >

On the BSP point of view, there is no subset synchronisation,
but still full global synchronisation, shared by the two expres-
sions, if they contain some.

IV. POWERLISTS AND SKELETONS IN BSML

A. The Powerlist Data-structure in BSML

In the remaining of the paper we assume bsp_p() is a
power of two. The length of a powerlist is also a power of two,
but it could be smaller or bigger that the number of processors.
Therefore we could define the type of powerlists as:

type ’a powerlist = | S of ’a array | P of ’a array par

where ’a array is the pre-defined type of generic arrays in
OCaml. ’a is a type variable meaning an array could contain
values of any type as long as all the values in an array have
the same type. The enumerative array value [| "Hello"; "World"|]
is an array of two elements, and the type of this value is
string array.

A type definition like powerlist in OCaml is similar to a
union type in C or a record type with variant parts in Ada.
However there is no discriminant field. The symbols S and P,
called constructors, are used to discriminate between values
of the type powerlist. For example S [|0;1|] is a sequential
powerlist of integers, while P (mkpar(fun i→ [|i|])) is a par-
allel powerlist of integers, of size bsp_p. Both have type
int powerlist.

The function map on powerlists could then be defined as:

let map f = function
| S a→ S (Array.map f a)
| P a→ P (parfun (Array.map f) a)

But then, it would be more convenient to have recursive
definition of powerlist with a recursive definition of map:

type ’a powerlist = | S of ’a array | P of ’a powerlist par
let rec map f = function | S a→ S (Array.map f a)

| P a→ P (parfun (map f) a)

In the case of map, the advantage is not so big, but if we
imagine the sequential case is not a function that already exists
in the module Array of OCaml standard library, the benefits are
much bigger in term of concision and readability.

However, with this definition of powerlist, we need to be
very careful when writing functions as it is forbidden in BSML
to nest parallel vectors. In this context it means that in the
case of constructor P the parallel vector should contain only
powerlist values built with constructor S.

Actually we can modify the definition of the powerlist
to use a newly introduced feature of OCaml: generalised
algebraic datatypes or GADT. They introduce two novelties
with respect to sum types: the possibility to have more con-
strained type parameters depending on the constructor, and the
possibility to introduce existential type variables (i.e. using a
type variable in a constructor case that is not one of the type
parameters).

There are several possibilities to define the type powerlist
in order to ensure that the constructor P is only applied to
parallel vectors of powerlists built with constructor S. Johann
and Ghani showed that the essence of GADTs [19] is the
following type and function:

type (’a,’b) eq = Eq: (’a,’a) eq
let cast: type a b. (a,b) eq→ a→ b = fun Eq x→ x

Here the type eq has two type parameters: ’a and ’b. It has
only one constructor: Eq. This constructor does not have any
argument. In the previous definitions of powerlist we only
give the type of the arguments of the constructors (after the
keyword of) but the type of the result is implicitly ’a powerlist.
With GADTs, one must also provide the type of the result
of an application of the constructor: this type should be an
instantiation of the polymorphic type being defined. In the case
of the construction Eq, the return type is (’a,’a) eq, meaning
the second parameter of the type eq is instantiated with ’a.
This type actually adds a type constraint: if a value Eq exists
it means that the parameters of type eq are equal. If we think
in term of logic, anoter way to see the value Eq is to see it
as a witness of the equality of two types (the arguments of
eq). The function cast uses such a witness to perform type
coercion.

In practice we found using this GADT is the easiest way
to deal with our problem by defining the type powerlist as:

type seq and dist
type (’a,’kind) powerlist =
| S of (seq,’kind) eq ∗ ’a Array.t
| P of (dist,’kind) eq ∗ (’a,seq) powerlist par

The types seq and dist are just tags: we cannot build values
of these types because they have no constructor. The type
powerlist has now two type parameters: ’a is the type of
the values the powerlist contains, and ’kind indicates how
the powerlist contains the scalar values: in a sequential data
structure, or in a distributed data structure. In the following
we call the nature of the data structure used, the kind of the
powerlist and use k or kind and variants as type variable names.
In the case of the distributed data structure, the parallel vector
contains only sequential powerlist values. Note also that the
type for arrays in now Array.t: in OCaml standard library it is a
synonym of array, but in this case we partially re-implemented
the Array module so that there is sharing rather than copying
when an array is cut in half then the two halves are appended
later. The map function could be defined in a very similar way
as before:

let rec map: type k.(’a→ ’b)→ (’a,k) powerlist→ (’b,k) powerlist =
fun f→ function
| S (eq,l)→ S (eq, Array.map f l)
| P (eq,v)→ P (eq, parfun (map f) v)

Note that while being moderately less convenient to write than
the previous definition, it is much more informative: we know
that the map function preserves the kind of the powerlist it
works on.

However in Hindler-Milner system, types of polymorphic
terms contains type variables and implicit universal quantifica-
tion, but the quantifiers are restricted to appear only in the front
of the type and quantify only over monomorphic types: it is
rank-1 polymorphism. In practice it means that if we define a
function f that takes as argument a kind preserving function g,
then in the body of f , g could only be applied to the same kind
of powerlist. This is too restrictive for our goal. Fortunately,
OCaml relaxes the rank restriction for records and methods.
We therefore define a new type and map as follows:
type (’a,’b) preserving =

{ body: ’k. (’a,’k)powerlist→ (’b,’k)powerlist }
let rec map : (’a→ ’b)→ (’a,’b) preserving = fun f→ {

body = function
| S (eq,l)→ S (eq, Array.map f l)
| P (eq,v)→ P (eq,parfun ((map f).body) v)

}

B. Basic Functions

In addition to map and other basic functions, we defined
functions used to build powerlists, in a way similar to mkpar.
We followed the OCaml naming convention for arrays: init
is a function that builds a powerlist from a length and a
function of signature int→ ’a. There is a specificity: if the
length is smaller that the number of processors, then we
build a sequential powerlist, otherwise we build a distributed
powerlist. However if we define this function recursively, we
want that the recursive call builds a sequential powerlist, even
if the length is greater than bsp_p. Therefore we need an
additional argument stating the kind of powerlist we want to
produce. Moreover such an argument is needed to produce the
kind in the result type:
type _ kind = Seq: seq kind | Par: dist kind

let rec init:type k. k kind→ int→ (int→ ’a)→ (’a,k)powerlist =
fun kind size f→ assert(is_power_of_2 size);

match kind with
| Par when size >= bsp_p()→

let lsize = size / (bsp_p()) in
P(Eq,mkpar(fun i→ init Seq lsize (fun j→ f(j+i∗lsize))))

| Seq→ S(Eq,Array.init size f)
| _→ failwith("init: cannot create a parallel powerlist "^

"whose size if smaller than bsp_p")

We implemented all the functions mentioned in section II,
we just present here one of them, mapn:
let rec mapn: ’k. int→ (’a,’b) preserving→
(’a,’k)powerlist→ (’b,’k)powerlist =
fun n f pl→
if length pl = n then f.body pl
else match pl with
| S(eq,_)→

let t1,t2 = untie (castk (sym eq) pl) in
castk eq (tie (mapn n f t1) (mapn n f t2))

| P(eq, a)→
if bsp_p() = 1 then P(eq,parfun (mapn n f) a)
else let e() = par_of(mapn n f ((castk (sym eq)) pl)) in
P(eq, juxta (bsp_p()/2) e e)

where tie and untie have the usual semantics of the tie operation
on powerlists, but in this case only defined for sequential
powerlists. In the case of distributed powerlists, we use BSML
juxtaposition operation. However as juxtaposition only deals
with expressions of type par we need to extract the parallel
vector from the distributed powerlist:

let par_of : (’a,dist)powerlist→ (’a,seq)powerlist par =
function | P(_, a)→ a | _→ assert false

We also need to help OCaml type inference using explicit
casts. These expressions are in fact kind of proof terms to
show the equality between type expressions. This is better
understood through the Curry-Howard correspondence, where
a type corresponds to the statement of a property, and a
program or an expression of this type corresponds to a proof
of this property. In our case type expressions of the form
(t1,t2)eq represent the statement of the fact that types t1 and t2
are equivalent. Let us explain one of this “proof terms” used
to cast. In the sequential case (branch S(eq,_) of the pattern
matching), the term castk (sym eq) relies on the following
signatures and definitions:

let sym : type a b. (a,b) eq→ (b,a) eq = (∗ ... ∗)
let subst : type a b k k’. (a,b) eq→ (k,k’) eq→

((a,k)powerlist, (b,k’)powerlist) eq = (∗ ... ∗)
let castk : type k k’.(k,k’)eq→ (’a,k)powerlist→ (’b,k’)powerlist=

fun eq→ cast (subst Eq eq)

It means that as eq is a proof that the type seq is equal to the
type variable ’k, then ’k is equal to seq (by symmetry) and then
(’a,’k)powerlist is equal to (’a,seq)powerlist (by substitution).
This last equality is used to cast pl that has type (’a,’k)powerlist
into the same value but of type (’a,seq)powerlist that is the
required type input for function untie.

C. Divide-and-Conquer Patterns

As described in section II, the divide and conquer functions
over powerlists are transformed into one of the two output
pattern: a top-down recursion denoted F ⇓ or a bottom-up
computation F⇑. Once a function is expressed in such a way, it
can easily be computed in parallel by calling the corresponding
parallel skeleton. We describe here the implementations of
the two parallel skeletons. For the sake of conciseness, we
present explicitly only the bottom-up skeleton; the top-down
computation is very similar. The main difference is that in top-
down recursion, adjust functions are applied before splitting
the list, the recursion ends by computation on singletons,
whereas the bottom-up skeleton first computes on singletons
then computes adjustment of merged sub-lists until the full
size is reached (remember that these skeletons compute a list
of the same the size as the input list).

For each skeleton, we implemented first a naive implemen-
tation very close to the definition given by Achatz and Shulte.
In figure 1 we present the bottom up pattern where sigma is a
function used to update a counter initially set to s, l and r are
the “adjusting functions” and p is a powerlist.

These definitions use join in a very inefficient way: at each
position of the list, they computes two values, then selects the
value of interest using join. These inefficient implementations
were used as specifications against which we tested efficient

let bottom_up_spec : ’k. (’a→ ’a)→
(’a→ (’b, ’b, ’b) preserving2)→ (’a→

(’b, ’b, ’b) preserving2)→
’a→ (’b,’k) powerlist→ (’b,’k) powerlist =
fun sigma l r s p→
let rec f_up : type k. int→ int→ ’a→

(’b,k) powerlist→ (’b,k) powerlist =
fun n len s p→

if n=1 then p
else

let n’ = n/2 in
let q = corr len p in
let joined = join len (mapn2 len (l s) p q)

(mapn2 len (r s) q p) in
f_up n’ (2∗len) (sigma s) joined in

f_up (length p) 1 s p

Fig. 1. Naive Bottom-Up Pattern

versions of the skeletons named bottom_up and top_down
where we only compute the needed value. The implementa-
tions are not shown here for the sake of conciseness but can
be found online2.

For distributed lists, we replaced join by a juxtaposition
where the result of the function l (resp.r) is computed only
on the first (resp. second) half of the processors. During the
recursion, functions are applied to sequential lists, in this case
the list is split and once again only the relevant values are
computed on the sub-parts.

The butterfly communication skeleton corr can be costly
to use: if used with a parameter n greater than the number
n of elements per processor, it performs a communication
of n values per processors and a synchronisation barrier. As
some derivations follow the output patterns but do not use
the communicated values, we added an optional argument
to the skeletons, use_corr, which allows to specify that corr
has not to be computed. It is set by default to true, so that
the normal behaviour of the implementation is to perform
the communications; it is the programmer responsibility to
call the skeleton with ~use_corr:false as argument to avoid
unnecessary communications.

V. APPLICATIONS AND EXPERIMENTS

A. Bitonic sort.

A bitonic sequence of values is the concatenation of
two monotonic (i.e. increasing or decreasing) sequences. The
bitonic merge is an operation that produces a sorted list by
merging two bitonic lists. In this context the bm function takes
only one list as parameter and processes it by sorting the two
sub-parts of this list. It is implemented using the top_down
skeleton as follows:

let bm pl1 =
top_down id id’ (fun s→ map2 min) (fun s→ map2 max) 0 pl1

The bitonic sort can then be implemented by a bottom-up
recursion performing successive bitonic merges and reverse
bitonic merges:

2The full code is available at http://traclifo.univ-orleans.fr/PaPDAS/

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 4 8 12 16 20 24 28 32

T
im

e

Number of processors

size = 2^10

Fig. 2. Prefix Sum on a Shared-Memory Computer – Execution Time

let bs pl1 = bm (bottom_up ~use_corr:false id
(fun s→ {body=fun p q→ bm p})
(fun s→ {body=fun p q→ bm_rev q})
0 pl1)

This definition does not use the communications, thus the
optional parameter use_corr is set to false.

B. Prefix Sum.

Following the prefix sum problem derivation shown in
section II, the definition leads to this instantiation of the
bottom_up skeletons:

let psum op pl = bottom_up id (fun s→ {body = fun p q→ p})
(fun s→ {body = fun p q→

let lst = last p in (map (op lst)).body q})
0 pl

The counter is not used, so we took the identity function for
sigma and 0 as starting value. The left adjustment function re-
turns the left sub-list unmodified; the right adjustment function
adds the last element of the left sub-list to each element.

C. Experiments

We measured the execution times of some of the appli-
cations we developed on two parallel machines: SPEED on
a shared-memory computer containing 4 AMD Opteron 6174
processors with 12 computing cores each, for a total of 48
cores. As it is required that the number of processing elements
are a power of two, we used only up to 32 cores, and ARTEMIS
a cluster of 32 nodes of Intel Xeon E5-2630 processors, with
Ethernet and Intel Truescale networks. We used up to 256
cores.

For the prefix sum application, we generated powerlists of
random 20×20 matrices of 64 bits floating point numbers, and
we used a naive O(n3) multiplication as associative operator.
Figure 2 shows the results for the computation of prefix sum
on a powerlist of size 218 with matrix elements on the SPEED
machine.

The experiments for sort computation were done on pow-
erlists of size 222 on the ARTEMIS machine. The timings
are the average value of a series of measures. The speedup
obtained are shown in Figure 3.

These experiments shows good performances in the case of
prefix sum and good scalability for bitonic sort. However the
speed of the bitonic sort could be improved: for the moment

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 4 8 16 32 64 128

Sp
ee

du
p

Number of processors

Speedup of sort computation on a list of size 2^{22}

Fig. 3. Bitonic Sort on a Distributed-Memory Machine – Speedup

the sharing of powerlists for very fast sequential tie/untie
is not done all the time, as we preserve a functional style.
Therefore some copies of array are performed and decrease
the overall performance. Nevertheless we plan to improve that
by providing also patterns with imperative style in some parts
of the computation.

VI. RELATED AND FUTURE WORK

BSP model [2] was developed around the following idea:
structured parallel programs ought to be conceived as two
separate and complementary entities – computation, which
expresses the calculations in a procedural manner, and – coor-
dination, which abstracts the interaction and communication.
Many other models imported this idea directly or indirectly.

Algorithmic Skeletons [1] abstract commonly used patterns
of parallel computation, communication, and interaction, and
provides high abstraction, portability across different architec-
tures, and high performance. In the functional programming
setting, this approach proved to be a very successful one, since
functional programming concepts allow simple representation
of the skeletons [20], [21], [22].

Homomorphisms which represent important skeletons (in
particular on join lists [4], [23]) are special kind of functions
that are very efficient for simple representation of parallel
programs that follow the divide and conquer structure. Pow-
erlists data structures are in a way similar to join lists, and as
we have presented, they can be successfully used in defining
simple, provably correct, functional parallel programs, which
are divide and conquer in nature.

The possibility of using powerlists to prove the correctness
of several algorithms has encouraged some researchers to pur-
sue automated proofs of theorems about powerlists. Kapur and
Subramaniam [24] have implemented the powerlist notation for
the purpose of automatic theorem proving. They have proved
many of the algorithms described by Misra using an inductive
theorem prover, called Rewrite Rule Laboratory. In [25] adder
circuits specified using powerlists are proved correct with
respect to addition on the natural numbers. The attempt done
in [26] shown how ACL2 can be used to verify theorems about
powerlists. Still, the considered powerlists are not the regular
structures defined by Misra, but structures corresponding to
binary trees, which are not necessarily balanced.

We have presented in [27] a formalisation of powerlists in
the Coq [9] proof assistant. Our methodology was to obtain a
small axiomatisation of this data structure, as close as possible

to the pen-and-paper version, and then to build on it. As
BSML is also formalised in Coq [13], it is possible to verify
the correctness of pure functional parallel versions of the
powerlist functions presented in this paper. We intend to join
the results presented in [27] with the work presented here, in
order to be used in a complete, more general framework; this
will allow the development of correct and verifiable parallel
programs with predictable performances using theories and
tools that facilitate the development of efficient applications
by implementing simple programs satisfying conditions easily,
or ideally automatically, proved. The framework will use the
axiomatisation of lower level parallel programming primitives
and their use to implement the high-level primitives in order to
extract [28] actual parallel code from the developments made
within proof assistants.

VII. CONCLUSION

In this paper we have presented how parallel programs
defined on powerlists could be transformed to real code in the
functional language OCaml plus calls to the parallel functional
programming library Bulk Synchronous Parallel.

In order to transform the abstract specifications of the
powerlist programs to BSML concrete implementations, we
have used the methodology presented in [8] that transform
the divide&conquer functions into tail-recursive computations.
Then we have adapted these single-control flow computations
to BSML by giving an efficient definition of powerlists in
OCaml based on GADTs, and by giving efficient prede-
fined implementations for top-down and bottom-up patterns
of computations defined in [8]. These implementations have
been improved by replacing the basic function join with
juxtaposition, and also by allowing the user to bypass the costly
butterfly communication when it is not necessary.

Examples for prefix sum, bitonic sort have been presented
and the experiments done for them show that the framework
is practical and allows simple development of efficient parallel
programs.

The existence of Coq formalisation for BSML [13] and
powerlists [27] will allow us to include the implementations
methods discussed in this paper into the more formal and
general practical framework.

ACKNOWLEDGEMENTS

This work is partly supported by ANR (France) and JST
(Japan) (project PaPDAS ANR-2010-INTB-0205-02 and JST
10102704).

REFERENCES

[1] M. Cole, Algorithmic Skeletons: Structured Management
of Parallel Computation. MIT Press, 1989, available at
http://homepages.inf.ed.ac.uk/mic/Pubs.

[2] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, p. 103, 1990.

[3] R. Bisseling, Parallel Scientific Computation. A structured approach
using BSP and MPI. Oxford University Press, 2004.

[4] M. Cole, “Parallel Programming with List Homomorphisms,” Parallel
Processing Letters, vol. 5, no. 2, pp. 191–203, 1995.

[5] J. Misra, “Powerlist: A structure for parallel recursion,” ACM Trans.
Program. Lang. Syst., vol. 16, no. 6, pp. 1737–1767, November 1994.

[6] J. Kornerup, “Data structures for parallel recursion,” Ph.D. dissertation,
University of Texas, 1997.

[7] V. Niculescu, “PARES – A Model for Parallel Recursive Programs,”
Romanian Journal of Information Science and Technology (ROMJIST),
vol. 14, no. 2, pp. 159–182, 2011.

[8] K. Achatz and W. Schulte, “Architecture independent massive paral-
lelization of divide-and-conquer algorithms,” Fakultaet fuer Informatik,
Universitaet Ulm, 1995.

[9] The Coq Development Team, “The Coq Proof Assistant,”
http://coq.inria.fr.

[10] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and J. Vouillon,
“The OCaml System release 4.00.0,” http://caml.inria.fr, 2012.

[11] G. Cousineau and M. Mauny, The Functional Approach to Program-
ming. Cambridge University Press, 1998.

[12] F. Loulergue, F. Gava, and D. Billiet, “Bulk Synchronous Parallel ML:
Modular Implementation and Performance Prediction,” in International
Conference on Computational Science (ICCS), ser. LNCS, vol. 3515.
Springer, 2005, pp. 1046–1054.

[13] J. Tesson and F. Loulergue, “A Verified Bulk Synchronous Parallel ML
Heat Diffusion Simulation,” in International Conference on Computa-
tional Science (ICCS), ser. Procedia Computer Science. Elsevier, 2011,
pp. 36–45.

[14] Y. Minsky, “OCaml for the masses,” Commun. ACM, vol. 54, no. 11,
pp. 53–58, 2011.

[15] F. Gava and F. Loulergue, “A Static Analysis for Bulk Synchronous
Parallel ML to Avoid Parallel Nesting,” Future Generation Computer
Systems, vol. 21, no. 5, pp. 665–671, 2005.

[16] L. Gesbert, F. Gava, F. Loulergue, and F. Dabrowski, “Bulk Syn-
chronous Parallel ML with Exceptions,” Future Generation Computer
Systems, vol. 26, pp. 486–490, 2010.

[17] A. V. Gerbessiotis and L. G. Valiant, “Direct Bulk-Synchronous Parallel
Algorithms,” Journal of Parallel and Distributed Computing, vol. 22,
pp. 251–267, 1994.

[18] F. Loulergue, “Parallel Juxtaposition for Bulk Synchronous Parallel
ML,” in Euro-Par 2003, ser. LNCS, H. Kosch, L. Boszorményi, and
H. Hellwagner, Eds., no. 2790. Springer Verlag, 2003, pp. 781–788.

[19] P. Johann and N. Ghani, “Foundations for structured programming with
GADTs,” in POPL. ACM, 2008, pp. 297–308.

[20] R. Loogen, Y. Ortega-Mallen, and R. Pena-Mari, “Parallel Functional
Programming in Eden,” Journal of Functional Programming, vol. 3,
no. 15, pp. 431–475, 2005.

[21] R. D. Cosmo, Z. Li, S. Pelagatti, and P. Weis, “Skeletal Parallel
Programming with OcamlP3l 2.0,” Parallel Processing Letters, vol. 18,
no. 1, pp. 149–164, 2008.

[22] N. Scaife, S. Horiguchi, G. Michaelson, and P. Bristow, “A parallel
SML compiler based on algorithmic skeletons,” Journal of Functional
Programming, vol. 15, no. 4, pp. 615–650, 2005.

[23] Z. Hu, H. Iwasaki, and M. Takechi, “Formal derivation of efficient
parallel programs by construction of list homomorphisms,” ACM Trans.
Program. Lang. Syst., vol. 19, no. 3, pp. 444–461, 1997.

[24] D. Kapur and M. Subramaniam, “Automated reasoning about parallel
algorithms using powerlists,” State University of New York at Alban,
Tech. Rep. TR-95-14, 1995.

[25] ——, “Mechanical verification of adder circuits using rewrite rule
laboratory,” Formal Methods in System Design, vol. 13, pp. 127–158,
1998.

[26] R. A. Gamboa, “A formalization of powerlist algebra in ACL2,” J.
Autom. Reason., vol. 43, no. 2, pp. 139–172, 2009.

[27] F. Loulergue, V. Niculescu, and S. Robillard, “Powerlists in Coq:
Programming and Reasoning,” in First International Symposium on
Computing and Networking (CANDAR). IEEE Computer Society, 2013,
pp. 57–65.

[28] P. Letouzey, “Coq Extraction, an Overview,” in Logic and Theory of
Algorithms, Fourth Conference on Computability in Europe, CiE 2008,
ser. LNCS 5028, A. Beckmann, C. Dimitracopoulos, and B. Löwe, Eds.
Springer, 2008.

