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Abstract. BSPlib is a programming library for C and Fortran which
supports bulk synchronous parallelism (BSP). This paper is about a for-
mal semantics for the DRMA programming style of the BSPlib library.
The aim is to study the behavior of BSPlib programs and to propose
some syntactic characterizations used to provide guarantees on seman-
tic properties. This work is the basis for future tools dedicated to the
validation of BSPlib programs.
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1 Introduction

In the range of possibilities to program parallel architectures, from concurrent
programming with an imperative language and a message passing library such as
MPI [12] to sequential programming and parallelizing compilers, bulk synchro-
nous parallelism or BSP [11] is an intermediate approach. It aims at maximizing
the portability of performances by adding a notion of explicit processes to data
parallelism.

There are several libraries and languages which support bulk synchronous
parallel programming : libraries to be used with imperative languages such as C
and Fortran [6], or to be used with object oriented languages [5], or to be used
with functional languages [9, 10].

If in parallel programming the execution should be fast, other aspects such
as the ease of programs development or the ease of programs validation are also
important. In the case of concurrent programming, the difficulty of these two
tasks are confirmed by the high complexity of related validation problems [1].
Moreover the semantics of a concurrent program being in general very complex,
the time required to run it (related to its operational semantics) is also difficult
to determine, which hinders the portability of performances. The structured par-
allelism of the BSP model eases both programming and validation. Performance
prediction has been validated by experiments.

For pure functional bulk synchronous parallel programming, the complexity
is the same than the proof of pure functional sequential programs. It is possible
to use the Coq proof assistant to extract functional BSP programs from con-
structive proofs [4]. Other theories of the proof of BSP programs [7, 13, 3, 8] are
close in complexity to the sequential case.



In this paper we focus on the semantics of imperative BSP programs in SPMD
style. The proposed semantics models the BSPlib library subset which allows
direct remote memory access (DRMA) communications. From this semantics
we want to find properties on the syntax of programs which could guarantee
some properties on the semantics of the programs. Our aim was not to set a
priori constraints on the syntax to guarantee semantic properties such as done
in [2] for data-parallelism. We aimed at modeling a widely used and practical
library for BSP programming (BSPlib), to exhibit some undesirable behaviors
and some ways to avoid them. In the next section we give a quick overview of the
BSPlib and the model we designed, called BSP-IMP. In section 3 we present the
rules of the formal semantics. Section 4 relates syntactic properties of BSP-IMP
programs to semantic properties and gives an example. We end by conclusion
and future work in section 5. Omitted proofs and complete semantics can be
found in [14].

2 An Overview of BSPlib and BSP-IMP

BSPlib [6] is a library for bulk synchronous parallel (BSP) programming. In the
BSP model, a computer is a set of uniform processor-memory pairs, a commu-
nication network allowing inter-processor delivery of messages and a global syn-
chronization unit which executes collective requests for a synchronization barrier
(for the sake of conciseness, we refer to [11] for more details). A BSP program
is executed as a sequence of super-steps, each one divided into (at most) three
successive and logically disjoint phases: (a) Each processor uses its local data
(only) to perform sequential computations and to request data transfers to/from
other nodes; (b) the network delivers the requested data transfers; (c) a global
synchronization barrier occurs, making the transferred data available for the
next super-step.

BSPlib contains 20 basic operations and follows the SPMD paradigm. These
operations are distributed into two parts: One for direct remote memory access
(DRMA) and one for bulk synchronous message passing (BSMP). The BSPlib
offers functions to start and to stop the parallel execution as well as functions to
access the process identifier and the number of processes. The synchronization
barrier is called with the bsp sync function.

In DRMA style, communications are performed by the bsp put and bsp get
functions:

– bsp put(dest, src, tgt, offset, nbytes) sends data to a remote me-
mory location. dest is the identifier of the process where data are to be
stored, src and tgt are the locations where the data are to be read / stored
, offset is a displacement in byte from tgt where data will be copied and
nbytes is the amount of data to transfer.

– bsp get(dest, rloc, offset, tgt, nbytes) requests data from a remote
memory location. dest is the identifier of the process where requested data
are. rloc and tgt are the locations where the data are to be remotely



read / locally stored, offset is a displacement in byte from src from where
data will be copied and nbytes is the amount of data to transfer.

DRMA access are allowed only on registered memory locations: registration and
unregistration are done using the bsp push reg, bsp pop reg functions.

In our model, called BSP-IMP, the programs instructions consist of a small
imperative subset and two DRMA communication instructions: put(dest, src, tgt)
and get(dest, rloc, tgt) where dest and src are arithmetic expressions as we only
use integer values and tgt and rloc are variables. Memory locations are not regis-
tered in BSP-IMP but this could be easily added to the semantics. The following
grammars define respectively the set of arithmetic expressions aexp, the set of
boolean expressions Bexp and the set of programs or commands Com:

aexp : a ::= n | X | a + a | a− a | a× a | This | Nproc
bexp : b ::= True | False | a = a | a ≤ a | ¬b | b0 ∧ b1 | b0 ∨ b1

com : c ::= c; c | X := a | if b then c end | while b do c end | skip
| put(a, a,X) | get(a,X, X) | sync

where X is a variable ( memory location ) and n is an integer constant.

3 Formal Operational Semantics

The operational semantics specifies, by means of a set of rules, how a program
will be executed. In the BSP model the execution is a sequence of super-steps.
In each super-step, the first phase of asynchronous computations is performed
independently on each processor. These computations are described by a first set
of rules which are called local rules because these rules describe the computation
at a specific processor of the parallel machine. The communications and the
synchronization barrier need the cooperation of all the processors. These phases
of the super-steps are described by a second set of rules called global rules.

The first set of rules defines a relation −→i
p between:

- A triple 〈c, σ, r〉 consisting of a program c (an element of the set Com), an
environment σ which describes the memory state as a function from variables to
values, and a communication requests queue r;
- A triple 〈s, σ′, r′〉 consisting of an execution state s being either Ok, Err or
Wait(c), an environment and a communication requests queue.

Ok refers to the final state of a process that ended well, Err to the state of a
process ending with an error. Wait(c′) means that the local process is waiting for
a global synchronization, c′ is a sequence of commands that have to be executed
after the synchronization.

This relation means “starting from an initial memory state σ and a commu-
nication requests queue r, the program c will evaluate at processor i in a parallel
machine with p processors to the execution state s with final memory state σ′

and final communication requests queue r′”.
The second set of rules defines a relation −→p between:

- A triple 〈 C, Σ, R 〉 of vectors of width p. C is the vector of programs



[c0, . . . , cp−1]p, as BSP-IMP follows the SPMD paradigm, initially we have the
same program c everywhere. Σ is the vector of environments (one per processor)
and R is the vector of communication requests queues (one per processor). The
environment (resp. queue) at processor i is written Σ[i] (resp. R[i]).
- A triple 〈 S, Σ′, R′ 〉 where S is the final global execution state which can be ei-
ther Ok or Err (it is not a vector). Σ′ and R′ are the final vectors of environments
and queues.

3.1 Local Rules

We omit here the rules for the evaluation of boolean and arithmetic expressions.
They are similar to the ones in [15] and can be found in [14]. There are two
special arithmetic expressions: This which evaluates to the processor identifier
and Nproc which evaluates to the number of processors. These two values are the
ones given on the relation −→i

p . We focus here on the evaluation of commands.

Idle Command. The skip command does nothing. Its main purpose is to indicate
that there is nothing to do after a synchronization.

〈skip, σ, r〉 −→i
p 〈Ok, σ, r〉 (1)

Sequence of Commands. For a sequence of command c0; c1 if c0 ends well then
c1 is evaluated in the new environment (rule 2), if c0 raises an error c1 is not
evaluated and the error is re-raised (rule 3), finally if c0 leads to a waiting state
then c1 is added in this state as remaining work (rule 4).

〈c0, σ, r〉 −→i
p 〈Ok, σ′′, r′′〉 〈c1, σ′′, r′′〉 −→i

p 〈s, σ′, r′〉
〈c0; c1, σ, r〉 −→i

p 〈s, σ′, r′〉
(2)

〈c0, σ, r〉 −→i
p 〈Err, σ′, r′〉

〈c0; c1, σ, r〉 −→i
p 〈Err, σ′, r′〉

(3)

〈c0, σ, m〉 −→i
p 〈Wait(c′0), σ′, m′〉

〈c0; c1, σ, m〉 −→i
p 〈Wait(c′0; c1), σ′, m′〉

(4)

Conditional Execution. In the evaluation of if b then c end if the condition b
evaluates to true then c is evaluated (rule 5) else there is nothing to do (rule 6).

〈b, σ, m〉 −→i
p True 〈c, σ, m〉 −→i

p 〈s, σ′, m′〉
〈if b then c end, σ, m〉 −→i

p 〈s, σ′, m′〉
(5)

〈b, σ, m〉 −→i
p False

〈if b then c end, σ, m〉 −→i
p 〈Ok, σ, m〉

(6)



While Loop. In the evaluation of while b do c end if the condition b evaluates
to false there is nothing to do (rule 7), else the body c of the loop is evaluated.
If it evaluates to Err then the evaluation of the while loop is stopped (rule 9)
otherwise while b do c end is evaluated in the new environment obtained after
the evaluation of the body of the loop. This recursive evaluation could lead either
to the request for a synchronization barrier (rule 10) or not (rule 8).

〈b, σ, m〉 −→i
p False

〈while b do c end, σ, m〉 −→i
p 〈Ok, σ, m〉

(7)

〈b, σ, m〉 −→i
p True 〈c, σ, m〉 −→i

p 〈Ok, σ′′, m′′〉
〈while b do c end, σ′′, m′′〉 −→i

p 〈s, σ′, m′〉
〈while b do c end, σ, m〉 −→i

p 〈s, σ′, m′〉
(8)

〈b, σ, m〉 −→i
p True 〈c, σ, m〉 −→i

p 〈Err, σ′, m′〉
〈while b do c end, σ, m〉 −→i

p 〈Err, σ′, m′〉
(9)

〈b, σ, m〉 −→i
p True 〈c, σ, m〉 −→i

p 〈Wait(c′), σ′, m′〉
〈while b do c end, σ, m〉 −→i

p 〈Wait(c′;while b do c end), σ′, m′〉
(10)

Remote Memory Write. put(a1, a2, X) is a command which aims at writing
the value of the expression a2 in the memory location X at processor given by
expression a1. If the arithmetic expression a1 evaluates to a value in the range
[0, p − 1] then a communication request is added to the local queue (rule 11).
The communication request 〈X@j ← n〉 means that value n should be written
into memory location X at processor j.

If a1 is not a valid processor identifier an error is raised (rule 12).

〈a1, σ, m〉 −→i
p j, j ∈ [0, p− 1] 〈a2, σ, m〉 −→i

p n

〈put(a1, a2, X), σ, m〉 −→i
p 〈Ok, σ, m.〈X@j ← n〉〉

(11)

〈a1, σ, m〉 −→i
p j, j 6∈ [0, p− 1]

〈put(a1, a2, X), σ, m〉 −→i
p 〈Errput, σ, m〉

(12)

Remote Memory Read. Similar to remote memory write.

〈a1, σ, m〉 −→i
p j, j ∈ [0, p− 1]

〈get(a1, Y,X), σ, m〉 −→i
p 〈Ok, σ, m.〈X@i ← Y@j〉〉

(13)

〈a1, σ, m〉 −→i
p j, j 6∈ [0, p− 1]

〈get(a1, Y,X), σ, m〉 −→i
p 〈Errget, σ, m〉

(14)

Local Affectation. The local environment is modified by changing the value
σ(X) to the value of the arithmetic expression a.

〈a, σ, m〉 −→i
p n

〈X := a, σ, m〉 −→i
p 〈Ok, σ[X 7→ n], m〉

(15)



Synchronization Awaiting. The command sync requests a global synchroniza-
tion. The synchronization barrier can only be global so this request can only be
performed at the global level. Thus at the local level the sync command leads
to a waiting state Wait(skip).

〈sync, σ, m〉 −→i
p 〈Wait(skip), σ, m〉 (16)

3.2 Global Rules

The global rules are used to perform the communication requests and the global
synchronization barrier or to end globally the computation. In the following
rules, P denotes the range of processor identifiers. There are four different cases.
Rule (17): All processes are in a waiting state. In this case data are exchanged
which is modeled by the C operation between the vector of memory states and
the vector of communication requests queues. C could be either:

(a) A relation to model the behavior of the BSPlib: in this case the semantics
is non-deterministic because two processors could write different values of the
same memory location of a third processor and the behavior is not specified.

(b) A function to determinise the semantics. This could be done for example
by giving a priority to each processor for remote memory write, or by giving
a binary commutative operator to combine the different values written on the
same memory location by remote processors. It is also possible to add a rule
to raise an error when two processors try to write different values to the same
memory location. This various options are described in more details in [14].
Rule (18): if at least one process ends ( ↓ ) either in the Ok state or erroneously
while at least one other is requesting a global synchronization then a global error
Errsync is raised.
Rule (19): If all processes end well, the final global execution state is Ok.
Rule (20): If at least one local process ends with an error ErrL ∈ {Errget;Errput}
and no other requests a global synchronization then the ErrG error is raised at
the global level.

∀i ∈ P, 〈ci, Σ[i], R[i]〉 −→i
p 〈Wait(c′i), Σ′[i], R′[i]〉

C (Σ′, R′, Σ′′) 〈 [c′0, . . . , c
′
p−1]

p, Σ′′, ∅ 〉 −→p 〈 ↓, Σ′′′, R′′ 〉
〈 [c0, . . . , cp−1]p, Σ, R 〉 −→p 〈 ↓, Σ′′′, R′′ 〉

(17)

∃i ∈ P, 〈ci, Σ[i], R[i]〉 −→i
p 〈Wait(c′i), Σ′[i], R′[i]〉

∃j ∈ P, 〈cj , Σ[j], R[j]〉 −→j
p 〈↓, Σ′[j], R′[j]〉

〈 [c0, . . . , cp−1]p, Σ, R 〉 −→p 〈 Errsync, Σ′, ∅ 〉
(18)

∀i ∈ P, 〈ci, Σ[i], R[i]〉 −→i
p 〈Ok, Σ′[i], R′[i]〉

〈 [c0, . . . , cp−1]p, Σ, R 〉 −→p 〈 Ok, Σ′, ∅ 〉
(19)

∃i ∈ P, 〈ci, Σ[i], R[i]〉 −→i
p 〈ErrL, Σ′[i], R′[i]〉

∀j ∈ P, 〈ci, Σ[j], R[j]〉 −→j
p 〈↓, Σ′[j], R′[j]〉

〈 [c0, . . . , cp−1]p, Σ, R 〉 −→p 〈 ErrG, Σ′, ∅ 〉
(20)



4 Synchronization Error Free Programs

An interesting property to check for a BSP-IMP program is the absence of syn-
chronisation errors. A program is free of such an error if each process reaches the
same number of sync during the program evaluation. Due to possible presence
of sync in or after a loop the problem is undecidable in general. Nevertheless
we can decide it for a subset of BSP-IMP programs. We characterize those who
have the replicate synchronization property .

A program c ∈ Com is said to have the replicate synchronization property
if for all “if b then c′ end” and “while b do c′ end” in which c′ contains sync,
b evaluates to the same value at each processor in [0,Nproc − 1]. Of course, to
evaluate each sync needed at global level, each process has to be free of local
errors that could break the normal program evaluation flow.

Theorem 1. A program Pr without local error, wich terminates and for which
the replicate synchronization property hold, is synchronization error free.

A variable which has the same value at all processors is called a replicated
variable. It can be seen as a shared variable. A boolean expression will evaluate
to the same value at all processors if all the variable occurences are replicated.

A subset Rep(Pr) of replicated variables in a program Pr can be build from
variables not modified by a communication, and which are affected to expres-
sion that contains only constants and replicated variables. Those affectations
cannot be made inside while or if statements for which the condition does not
evaluate identically over all the processors. Furthermore a value has to be pre-
viously assigned to the variable at least one time in the program. Indeed initial
local environment are not in general identical over all processor, so uninitialized
variables are not replicated occurrences.

We have here mutually dependent definitions of replicated variables and repli-
cated boolean expressions, but the Rep(Pr) can be build as the greatest fixed
point of variables having the previous property.

The following scan algorithm computes the parallel prefix sums:

Algorithm 1 (Scan)
i:=1;

while (2i−1 ≤ Nproc ) do
if (This ≥ 2i−1) then get(This− 2i−1, X, Xin) end;
sync;
if (This ≥ 2i−1) then X = Xin + X end;
i = i + 1

end

It is an example of program that can be shown synchronization error free
using the previous characterization.

We can easily prove that there is no error at local level.
Furthermore the only conditional component of the program which contains

a sync is the main while loop and its condition (2i−1 ≤ Nproc) contains only
replicated variables. Nproc has clearly the same value over all processors and i
satisfies the conditions previously described.



5 Conclusion and Future Work

We proposed an operational semantics for a small bulk synchronous parallel im-
perative language. This BSP-IMP syntax and semantics models very closely the
behavior of the BSPlib programming library. With some additional conditions
BSP-IMP programs are deterministic. It is to notice that the BSPlib could be
easily modified to follow the BSP-IMP semantics which raises an error when non
deterministic remote memory writes occur. We used this semantics to show how
a subclass of BSP programs can be shown to be free of synchronization errors.

The presented work is limited to the DRMA part of the BSPlib library.
Future work includes the extension to the bulk synchronous message passing
part (BSMP) of BSPlib. Other classes of programs will be studied. We also plan
to develop tools for the analysis of BSPlib programs.
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