
Systematic Development of Correct Bulk
Synchronous Parallel Programs

Louis Gesbert1, Zhenjiang Hu2, Frédéric Loulergue3,
Kiminori Matsuzaki4, Julien Tesson3

1 : MLstate, Paris, France
2 : National Institute of Informatics, Japan
3 : LIFO, University of Orléans
4 : Kochi University of Technology

December 10, 2010 – PDCAT

F. Loulergue Systematic Development of Correct Bulk Synchronous Parallel Programs December 10, 2010 – PDCAT 1 / 26

Outline of the Talk

1 Motivations and Background

2 Systematic Derivation of BSP Programs

3 Using a Proof Assistant

4 Experiments

5 Conclusions and Future Work

F. Loulergue Systematic Development of Correct Bulk Synchronous Parallel Programs December 10, 2010 – PDCAT 2 / 26

Our Goal

To ease the development of correct
and verifiable parallel programs with

predictable performances

F. Loulergue Systematic Development of Correct Bulk Synchronous Parallel Programs December 10, 2010 – PDCAT 3 / 26

Parallel Programming

Automatic
Parallelization

Structured Parallelism

I Bulk Synchronous Parallelism

I Declarative Parallel Programming

I Algorithmic Skeletons

I . . .

Concurrent &
Distributed

Programming

F. Loulergue Systematic Development of Correct Bulk Synchronous Parallel Programs December 10, 2010 – PDCAT 4 / 26

Bulk Synchronous Parallelism (BSP)

Research on BSP
90’ by Valiant & McColl

Three models

I abstract architecture

I execution model

I cost model

BSP computer
I p processor / memory pairs

(of speed r)
I a communication network

(of speed g)
I a global synchronisation unit

(of speed L)

Execution model

Cost model
T (s) = max0≤i<p wi + h × g + L

where h = max0≤i<p{h+
i , h

−
i }

F. Loulergue Systematic Development of Correct Bulk Synchronous Parallel Programs December 10, 2010 – PDCAT 5 / 26

The Bulk Synchronous Parallel ML Approach

I an efficient functional programming language with formal
semantics and easy reasoning about the performance of
programs (strict evaluation):

ML (Objective Caml flavor)

I a restricted model of parallelism with no deadlock, very
limited cases of non-determinism, a simple cost model:

Bulk Synchronous Parallelism

The result is:
Bulk Synchronous Parallel ML (BSML)

F. Loulergue Systematic Development of Correct Bulk Synchronous Parallel Programs December 10, 2010 – PDCAT 6 / 26

Bulk Synchronous Parallel ML

Design principles

I Small set of parallel primitives

I Universal for bulk synchronous parallelism

I Global view of programs

I Simple formal semantics

BSML

a sequential functional language

+ a parallel data structure (non nestable)

+ parallel operations on this data structure

Papers and software

I http://traclifo.univ-orleans.fr/BSML

F. Loulergue Systematic Development of Correct Bulk Synchronous Parallel Programs December 10, 2010 – PDCAT 7 / 26

http://traclifo.univ-orleans.fr/BSML

To Ease the Writing of BSML Programs . . .

I use the improved set of primitives:
I W. Bousdira, F. Gava, L. Gesbert, F. Loulergue, and G. Petiot.

Functional Parallel Programming with Revised Bulk
Synchronous Parallel ML. In Koji Nakano, editor, 2nd
International Workshop on Parallel and Distributed Algorithms
and Applications (PDAA). IEEE Computer Society, 2010.

I or do not write any program!
. . . write only specifications and derive programs

F. Loulergue Systematic Development of Correct Bulk Synchronous Parallel Programs December 10, 2010 – PDCAT 8 / 26

Development of Skeletal Parallel Programs

A lot of work on systematic derivation of skeletal parallel
programs:

I List homomorphism plays an important role in this derivation

I There is a good correspondence between skeletons and list
homomorphisms

I There is an theory, called Constructive Algorithmics, for
construction of list homomorphisms

Can we apply the constructive algorithmics theory to
derivation of BSP algorithms?

F. Loulergue Systematic Development of Correct Bulk Synchronous Parallel Programs December 10, 2010 – PDCAT 9 / 26

Derivation of BSP Programs

We aim to apply the homomorphic approach to systematic
derivation of BSP algorithms.

I What is the relationship between homomorphisms and BSP
algorithms?

I In skeletal programming: we use homomorphisms to hide data
communication

I In BSP programming: we want to use homomorphisms to
expose data communication

I How to systematically derive homomorphisms that are suitable
for the BSP model?

Solution:
BH, a Specific Homomorphism for BSP Computation

F. Loulergue Systematic Development of Correct Bulk Synchronous Parallel Programs December 10, 2010 – PDCAT 10 / 26

List Homomorphism

Function h on lists is a list homomorphism, if

h(x ++ y) = (hx)� (hy)

for some associative operator �
Properties

I Suitable for parallel computation in the D&C style:

sum(x ++ y) = sum x + sum y

I Enjoy many nice algebraic properties

F. Loulergue Systematic Development of Correct Bulk Synchronous Parallel Programs December 10, 2010 – PDCAT 11 / 26

The BSP Homomorphism: Informally

x y

l r

x y++

l

g2 x

l ⊗ g2 x

r

g1 y

g1 y ⊕ r

=⇒

F. Loulergue Systematic Development of Correct Bulk Synchronous Parallel Programs December 10, 2010 – PDCAT 12 / 26

The BSP Homomorphism: Formally

Definition (BH)

h is a BSP Homomorphism, or BH, if it can be written as:

h [a] l r = [k a l r]

h (x ++ y) l r = h x l (gr y ⊕r r) ++ h y (l ⊕l gl x) r

where gl and gr are homomorphisms with associated associative
operators ⊕l and ⊕r

F. Loulergue Systematic Development of Correct Bulk Synchronous Parallel Programs December 10, 2010 – PDCAT 13 / 26

Writing Specifications

For writing specifications:

I recursive definitions

I well-known collective operators: map, fold, scan, . . .

I communication operators: shift, permute, . . .

I a new collective operator: mapAround

mapAround

I is to map a function to each element of a list

I is allowed to use information of the sublists in the left and
right of the element

mapAround f [x1, x2, . . . , xn] =
[f ([], x1, [x2, . . . , xn]), f ([x1], x2, [x3, . . . , xn]),

. . . , f ([x1, x2, . . . , xn−1], xn, [])].

F. Loulergue Systematic Development of Correct Bulk Synchronous Parallel Programs December 10, 2010 – PDCAT 14 / 26

mapAround is a BSP Homomorphism

Theorem (Parallelisation mapAround with BH)

For a function
h = mapAround f

if we can decompose f as f (ls, x , rs) = k (g1 ls, x , g2 rs), where:

I k is any function,

I gi is a composition of a projection with a homomorphism

then h is a BSP Homomorphism

F. Loulergue Systematic Development of Correct Bulk Synchronous Parallel Programs December 10, 2010 – PDCAT 15 / 26

An Example: The Tower Building Problem

xL x1 x2 x3 xi xn−1 xn xR

hL h1
h2

h3 hi

hn−1 hn
hR

· · · · · ·

Specification
tower (xL, hL) (xR , hR) xs = mapAround visibleLR xs

where visibleLR (ls, (xi , hi), rs) = visibleL ls xi ∧ visibleR rs xi
visibleL ls xi = maxAngleL ls < h+hi−hL

x−xL

visibleR rs xi = maxAngleR rs < h+hi−hR
xR−x

maxAngleL [] = −∞
maxAngleL ([(x , h)] ++ xs) = h−hL

x−xL
↑ maxAngleL xs

and the function maxAngleR can be similarly defined.

F. Loulergue Systematic Development of Correct Bulk Synchronous Parallel Programs December 10, 2010 – PDCAT 16 / 26

BSML Programs?

I There is a BSML implementation of BH as a higher-order
function

I How are we sure BSML implementation actually realizes BH
specification?

F. Loulergue Systematic Development of Correct Bulk Synchronous Parallel Programs December 10, 2010 – PDCAT 17 / 26

The Coq Proof Assistant

The Curry-Howard correspondance
Programming World Logical World

Type Theorem

Program Proof

In practice

Coq can be seen as

I a functional programming language

I with a rich type system able to express logical properties

I plus a language of tactics to build proof terms

Coq allows program extraction from proofs

F. Loulergue Systematic Development of Correct Bulk Synchronous Parallel Programs December 10, 2010 – PDCAT 18 / 26

The SDPP Framework in Coq I

About BH

I Formalisation of BH definition
I Computational definitions of BH & proofs of equivalence

I sequential very inefficient
I sequential
I parallel
I sequential optimised
I parallel optimised

I extraction of the BSML implementation of BH

F. Loulergue Systematic Development of Correct Bulk Synchronous Parallel Programs December 10, 2010 – PDCAT 19 / 26

The SDPP Framework in Coq II

About specifying programs

I Proof of the correctness of BSML versions of communication
operators (shifts, permute)

I Formalisation of mapAround

I Proof that mapAround is a BH

I Proof that any homomorphism is a BH

I Formalisation of what does it means for a sequential function
to be parallelisable
⇒ composition of derivations, communication operators

F. Loulergue Systematic Development of Correct Bulk Synchronous Parallel Programs December 10, 2010 – PDCAT 20 / 26

The SDPP Framework in Coq III

Examples

I Tower Building Problem

I Maximum Prefix Sum Problem

I Array Packing Problem

Some statistics

Part Spec Proof

Support 1959 2791

BH 427 1185

Spec 188 186

BSML 895 1088

Examples 254 100

3723 5318

Available at
http://traclifo.

univ-orleans.fr/SDPP

F. Loulergue Systematic Development of Correct Bulk Synchronous Parallel Programs December 10, 2010 – PDCAT 21 / 26

http://traclifo.univ-orleans.fr/SDPP
http://traclifo.univ-orleans.fr/SDPP

Experiment: The Tower Building Problem

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40
processors

extracted from coq

33
33

3

3

33
33

33
33

33

3

33
33

33
33

33

3

33

3
33

3
33

3
direct implementation

+++++

+

+++++
+

++++

+

++
++++++++

+

++

+
+

++
++

+
f(x)=x

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40
processors

Computation time for extracted program

33333

3

3333333333

3

3333333333

3

33

3
33333

3
Computation time for direct implementation

+++++

+

++++++++++

+

++++++++++

+

++
++++++

+
GC time for program extracted from coq

22222

2

2222222222

2

2222222222

2

22

222222

2
GC time for direct implementation

×××××

×

××××××××××

×

××××××××××

×

××
××××××

×
Computation +GC time for program extracted from coq

44444

4

4444444444

4

4444444444

4

44

4
44444

4
Computation +GC time for direct implementation

? ? ? ? ?

?

? ? ? ? ? ? ? ? ? ?

?

? ? ? ? ? ? ? ? ? ?

?

? ?

?
? ? ? ? ?

?

F. Loulergue Systematic Development of Correct Bulk Synchronous Parallel Programs December 10, 2010 – PDCAT 22 / 26

Conclusion and Ongoing Work

Systematic Development of BSP Programs
Problem Specification

Derivation based on Proved

Transformation Theory

Algorithm in BH

Program extraction from Coq-proved

BSML implementation of BH

Certified BSP Parallel Programs in BSML

I A new skeleton and its
theory for deriving BSP
algorithms

I All proofs and formalisations
done in the Coq proof
assistant

I Experiments with programs
extracted from proofs

Ongoing work

I New applications

I More automation for Coq proofs

I Reasoning about BSP costs

F. Loulergue Systematic Development of Correct Bulk Synchronous Parallel Programs December 10, 2010 – PDCAT 23 / 26

Future Work

Verified frameworks for the
systematic development of parallel programs

from specifications to assembly code

I New skeletons and their theories
I Verified compilers:

I for BSML
I for Algorithmic Skeleton C

I Programs extraction and experiments

F. Loulergue Systematic Development of Correct Bulk Synchronous Parallel Programs December 10, 2010 – PDCAT 24 / 26

