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Do you trust you programs ? Is there a bug ?
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Introduction

A need to prove parallel programs :
cost of the crash of massively parallel computations
more and more parallel programs

Additional difficulties :
Communication procedures
Synchronization mechanisms
Interleaving of instructions

Use of Hoare semantics
Annotated programs (verification a posteriori/deductive)

partial correcteness
other properties
more automatic than Coq/Isabelle ?
less difficult than Coq/Isabelle ?

Generation of proof obligations
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BSPlib/PUB

Library for the BSP model:

C Language

Send/Receive routines

DRMA routines
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PUB Communications

Two kinds of communications:
Message Passing (BSMP)

void bsp_send(int dest,void∗ buffer, int size)
t_bspmsg∗ bsp_findmsg(int proc_id,int index)

Remote Memory Access (DRMA)
void bsp_push_reg (t_bsp∗ bsp, void∗ ident, int size)
void bsp_get (t_bsp∗ bsp, int srcPID, void∗ src,int offset,
void∗ dest, int nbytes)

Synchronisation : void bsp_sync(t_bsp∗ bsp)
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The WHY Language

WHY: an intermediate language

For program verification (deductive)

Annotated programs (pre- post conditions )

Several back-end provers (Coq, Alt-ergo, Simplify, Z3 . . . )

need axiomatisation for set/list etc.

’invariant’ and ’variant’ for each loop

need sometime ’ghost codes’

Provers can generate certificates (Isabelle/Coq)
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The WHY tools

Why

Frama-C KrakatoaWhy program

Annotated C program JML-Annotated Java program

Verification Conditions

Automatic provers
(Z3, Simplify, Yices,
Alt-Ergo, CVC3, etc.)

Interactive provers
(Coq, PVS,
Isabelle/HOL, etc.)
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Language definition

BSP-WHY is extended from WHY

Additional instructions for parallel operations

Additional notations in assertions about parallelism

Automatic transformation to Why code (sequentialisation)
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Language definition

BSPWhy ::= Why

| sync synchronisation

| push(x) Register x for global access

| put(e, x , y) Distant writing

| send(x ,e) Message passing

now a ’Parameter’ with a ’sync’ side-effect can be used instead
of a sync (MPI collective operations)

F. Gava and J. Fortin — FraDeCopp 2012 9 / 45
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Logic extensions

x is used to represent the value of x on the current
processor

x < i > is used to represent the value of x on the
processor i

< x > is used to represent the parallel variable x as an
array

t =<< f (pid) >> is a syntaxic sugar to
∀i . proc(i) → t[i] = f (i)
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Trying to prove its correctness

BSP-WHY, an extension of WHY for BSP algorithms:

Why

Frama-C+lib Krakatoa+lib

BSP-Why program

Annotated BSP C program JML-Annotated BSP Java program

Verification Conditions
Automatic provers
(Z3, Simplify, Yices,
Alt-Ergo, CVC3, etc.)

Interactive provers
(Coq, PVS,
Isabelle/HOL, etc.)

BSP-Why

Why program
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General idea of the transformation BSP-WHY ⇒ WHY

Simulation of the parallel execution by a sequential execution

SYNC SYNC

P1 P2 P3

F. Gava and J. Fortin — FraDeCopp 2012 12 / 45
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Decomposition into blocks (1/3)

We extract the biggest blocks of code without synchronization:
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Decomposition into blocks (2/3)

Each block is transformed into a for loop:
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Decomposition into blocks (3/3)

Need to check that the sync instruction match: no code such
as

if pid=0 then sync
else p

or even

if pid=0 then p1;sync
else p2;sync
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Memory management

p processors → 1 processor : need to simulate p memories in
one.

variable x → p-array x

Special arrays to store communications
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Transformation of variables

BSP-WHY term WHY term
x x[i]

<x> x
x<j> x[j]

F. Gava and J. Fortin — FraDeCopp 2012 17 / 45
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Variable not transformed into arrays

Some special cases :

A variable which lives only in a sequential block

A variable used with remote access communications
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Send communications

Communications are defined in a WHY prelude file:

Messages are stored in lists

The bsp_send function is defined as a parameter

Send communications are done with a predicate

The synchronisation calls each communication predicate
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Remote Memory Access: put/get operations (1/2)

Memory model more complex

A table of variables is stored

An association table keeps records of push associations

Queues for push, pop, put and get operations
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Remote Memory Access: put/get operations (2/2)

The association table is needed :

Proc 1 Proc 2

Push(x) Push(y)
Push(y) Push(x)
sync sync

P1 P2
x y
y x
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Subgroup synchronization

S = {0,1,2,3,4}
S1 = {0,1}
S2 = {2,3,4}
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Subgroup synchronization : example in C/PUB

t_bsp subbsp;
int part[2];
part[0] = 2;
part[1] = bsp_nprocs(bsp);
bsp_partition (bsp, &subbsp, 2, part);
if(bsp_pid()<2) {
...
bsp_sync(&subbsp);
...

} else {
...

}
bsp_done (&subbsp);

same kind of operation in MPI (even in collective operations)
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Subgroup synchronization : transformation
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Subgroup synchronization : safety

To avoid deadlocks, we check that all processors of a subgroup
will synchronize at the same time :

assert(∀i ∈ S, sub[i] ⊂ S)

bsp_sync(sub,S)

F. Gava and J. Fortin — FraDeCopp 2012 25 / 45
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Example: prefix calculation

At the beginning, each processor i contains a value xi

At the end, each processor contains the prefix
x0 ∗ x1 ∗ · · · ∗ xi

Useful in many calculations (FFT, n-body, graph algorithms
etc.)
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Cost

Worst-case analysis ⇒ adding counting variables (ticks) for
some operations

for each operation ⇒ adding one tick to the counter (side
effect=monad in Coq)
bigger invariants

O(n) ⇒ more difficult

more difficult than only correctness (even for sequential
computations)

less papers on machine-checked proofs but many
’Worst-case static analysis’ papers
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State-space construction (model-checking)

initial state s0

successors given by succ(s)

transition s → s′ whenever s′ ∈ succ(s)
inductive (iteration) computation of the state space

as a graph
as a set of reachable states

we here only present sets for simplicity
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Simple sequential algorithm in Python

1 def normal():
2 knonw={}
3 todo={s0}
4 while todo:
5 s=todo.pop()
6 known.add(s)
7 todo.update(succ(s)−known)
8 return known

F. Gava and J. Fortin — FraDeCopp 2012 31 / 45



Introduction BSP-Why Examples Conclusion

Sequential dfs algorithm in Python

1 def dfs(s):
2 known.add(s)
3 for new_s in succ(s)−known:
4 if new_s not in known:
5 dfs(new_s)
6

7 def main_dfs ()
8 known={}
9 dfs(s0)

10 return known

F. Gava and J. Fortin — FraDeCopp 2012 32 / 45
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Sequential breadth-first algorithm in Python

1 def breadth_first() =
2 known={}
3 current={s0}
4 next={}
5 while current:
6 for s in current:
7 known.add(s)
8 next.update(succ(s)−known−current)
9 current=next.copy();

10 next={}
11 return known

F. Gava and J. Fortin — FraDeCopp 2012 33 / 45



Now using WHY !



Introduction BSP-Why Examples Conclusion

Naive BSP algorithm

partition function cpu to place states onto processors
hash the state (modulo number of processors)
most used approach

each processor i computes succ(s) iff cpu(s) = i

other states are sent to their owners

stop when no processor has computed new states

F. Gava and J. Fortin — FraDeCopp 2012 35 / 45
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BSP algorithm (main loop) using BSP-Python

1 def main_par_state_space ():
2 knonw={}
3 pastsend={}
4 total =1
5 if cpu(s0)=my_pid:
6 todo={s0}
7 else:
8 todo={}
9 while total>0:

10 tosend=local_successor(known,todo,pastsend)
11 exchange(total,todo,known,tosend,pastsend)
12 return known

F. Gava and J. Fortin — FraDeCopp 2012 36 / 45
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local computations

1 def local_successors (known, todo, pastsend):
2 while todo:
3 s=todo.pop()
4 known.add(s)
5 for new_s in succ(s)−known−pastsend:
6 tgt =cpu(new_s)
7 if tgt ==my_pid:
8 todo.add(new_s)
9 else:

10 tosend[tgt].add(new_s)
11 return tosend
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Exchange of data and new todo/total/pastsend

1 def exchange (total, todo, known, tosend, pastsend) :
2 total , received=BSP_EXCHANGE(tosend)
3 todo=received−known
4 for i in xrange(0,nprocs)
5 pastsend.update(tosend[i])

F. Gava and J. Fortin — FraDeCopp 2012 38 / 45
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local computations (only pre- and post-conditions)

1 local_successors: known: state set ref → todo:state set ref → pastsend: state set ref →
2 { (known ⊆ StSpace) and (todo ⊆ StSpace) and (pastsend ⊆ StSpace) and (known ∩

todo)=∅
3 and (∀ s:state. s ∈(known ∪ todo) → cpu(s)=my_pid) and (∀ s:state. s ∈past_send →

cpu(s)6= my_pid)
4 }
5 state set fparray writes known, todo
6 { (todo=∅) and (known ⊆ StSpace) and (∀ s:state. s ∈known → cpu(s)=my_pid)
7 and (

⋃
(result) ⊆ StSpace) and ((result ∩ pastsend)=∅)

8 and (∀ i:int. isproc(i) → ∀s:state. s ∈result<i> → cpu(s)6= my_pid)
9 and ((known@ ∪ todo@) ⊆ known)

10 and (∀ s:state. s ∈known → succ(s) ⊆ (known ∪
⋃

(result) ∪ pastsend))
11 and (todo@=∅ →

⋃
(result)=∅)

12 }
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Main BSP loop

1 while total>0 do
2 {
3 invariant

⋃
(<known>) ∪

⋃
(<todo>) ⊆ StSpace

4 and (
⋃

(<known>) ∩
⋃

(<todo>))=∅
5 and GoodPar(<known>) and GoodPart(<todo>)
6 and (∀ i,j:int. isproc(i) → isproc(j) → total<i> = total<j>)
7 and total<0> ≥ |

⋃
(<todo>)|

8 and s0 ∈(
⋃

(<known>) ∪
⋃

(<todo>))
9 and (∀ e:state. e ∈

⋃
(<known>) → succ(e) ⊆ (

⋃
(<known>) ∪

⋃
(<todo>)))

10 and
⋃

(<pastsend>) ⊆ StSpace
11 and (∀ i:int. isproc(i) → ∀e:state. e ∈pastsend<i> → cpu(e)6= i)
12 and

⋃
(<pastsend>) ⊆ (

⋃
(<known>) ∪

⋃
(<todo>))

13 variant pair(paccess(total,0),| S \
⋃

(known) |) for lexico_order
14 }
15 let tosend=(local_successors known todo pastsend) in
16 exchange todo total !known !tosend
17 done;
18 !known
19 {StSpace=

⋃
(<result>) and GoodPart(<result>)}
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Now using BSP-WHY !



Introduction BSP-Why Examples Conclusion

Conclusion

BSP-WHY is an extension of the WHY language for BSP
programs

BSP-WHY programs are transformed into WHY programs

The proof obligations are generated by WHY

Examples: cost or BSP algorithms for state space
computation
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Perspectives (ongoing work)

Use BSP-WHY for our own BSP algoriths for checking
security protocols

Semantics and proof of the transformation of BSP-WHY
using Coq

Verified BSP implementation of data-parallel skeletons

Proof of a subset synchronisation example

Use this work to prove MPI programs with only global
operations
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Perspectives (future work)

The aim is to generate BSP-WHY code from a BSP/MPI-C
program

Use of Frama-C with the Jessie plugin

a true tool for costing analaysis

LTL/CTL* machine-checked model checking algorithms

adding tactics and theories for helping provers (
∑p

i=0)
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Merci !


