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First remark

Most usual data structures are tree-shaped with several kind of
additional pointers:

@ sharing pointers -~
@ root pointers

o father pointers
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For numerous algorithms, different views on data-structures can be
used for the verification
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Approach

Verification

Objective

Generate efficient and verified programs
(with pointers and/or mutable structures)

Safe code generation

Abstract Language Imperative langage

@ Arborescent data structure o Efficient :
+ pointers e Sharing

o Properties verified by o Mutability
induction @ Same properties
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General frame

lsabelle/HOL | ~ Isabelle/HOL Scala
theory extraction code
Imperative HOL
theory
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General frame

(Meta-)model ]

?

Isabelle/HOL Isabelle/HOL
theory extraction

other classes
(Scala/Java)
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Related work

Graph representation

@ Nodes and edges

@ Coinduction

@ Trees + pointers:

PALE [MSO01]

Term-graph rewriting in Tom using relative positions [BB08]
Locally nameless encoding of lambda-terms [Cha09]

B+ trees functional representation with pointers [MM10]

@ Proofs on raw heap and pointers

@ Hoare (Separation) Logic [Rey02]

A
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Verification

Case studies - Overview

@ Arbitrary rooted graph (with outgoing arity < 2)
@ High mutability

@ Proof by simulation

e LOPSTR'2010 [GSMP10]

21D]D)
@ Rooted acyclic graph (shared tree)

@ References comparisons
@ Direct proof
e TAAPSD’2010 [GS10], FoVeO0OS'2011 [GS11]
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(1]

Description

Algorithm features

Purpose

e Marking graphs without using more space (stack, ...)

@ Traversing a tree by terminal recursivity and without stack

Garbage collector, case study...

o Modification of the graph pointers to store the path to the
root

@ 2 variables containing the pointers :

e t: to the current node
e p: to the previously visited node
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Steps : Push

push
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Steps : Swing

L p p R

swing
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Steps : Pop
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Verification

Proof by simulation

sw-tr (p, t) J
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Verification

Choosing the spanning tree: Example with 2 possibility
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@ Description
@ Verification
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Description

Sharing

We add references to represent sharing. They also allow to add
mutable content in the nodes.

0 nbrefs = 0

1 nbrefs = 0

2 nbrefs = 0

nbrefs = 0
3

nbrefs = 1
4

5 nbrefs = -
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Description

build

primrec build ::
v expr = (bool, v) rtree Heap

where

build (Var i) = do{

cf < constLeaf False;

ct + constLeaf True;

mk i cf ct

}
| build (Const b) = (constLeaf b)
| build (BExpr bop el e2) = do{

nl < build el;

n2 < build e2;

app bop (n1, n2)

build

v

/5
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e

function app :
(bool = bool = bool) S, ,
= ((bool, 'v) rtree * (bool, 'v) rtree) ,/
= (bool, 'v) rtree Heap ) Il\ i 2 2
where / \ RN K
app bop (n1, n2) = do { ! v L/’/\\\J ¢
if tpair is-leaf (n1, n2) then ! app < ~ app
constLeaf (bop (leaf-val n1) (leaf-val n2)) \ } }
else do { | 4 4
let ((11, h1), (12, h2)) = |
select split-lh dup (n1, n2); '
| < app bop (11, 12); AN N »
h < app bop (h1, h2); N N, \//
mk (varOfLev (min-level (n1, n2))) | h TN mk
} |
} v
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Memoization and Garbage Collection

Memoization

Records previous computations results to reuse them

@ little change in functions and proofs

Garbage collection

Removes no more used BDDs from the maximal sharing table

@ several reference counter mutations in functions and proofs

@ weakening of an invariant

N
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Verification

Main theorem & benchmarks

Equivalent expressions construct the same BDD
lemma build-correct: [Vt € trees s1 U trees s2. robdd-refs t;

wf-heap s1; effect (build el) sl s1’t1;
wf-heap s2; effect (build e2) s2 s2' t2]
— (interp-expr el = interp-expr e2) <— struct-equal (t1, t2)

10*

time (ms)

102
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Urquhart benchmark

Pigeonhole benchmark
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Conclusion

Approach

Representing graphs as (trees 4 pointers) to verify transformations

Schorr-Waite
@ Arbitrary rooted graph (with outgoing arity < 2)

e High mutability / Proof by simulation

@ Rooted acyclic graph (shared tree)

@ References comparisons / Direct proof
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Conclusion

Conclusion

Approach

Representing graphs as (trees 4 pointers) to verify transformations

Schorr-Waite
@ Arbitrary rooted graph (with outgoing arity < 2)

e High mutability / Proof by simulation

@ Rooted acyclic graph (shared tree)

@ References comparisons / Direct proof

Thanks for your attention
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