FraDeCo(P)P 2012

PROOFS OF POINTER ALGORITHMS BY INDUCTIVE

REPRESENTATION OF GRAPHS
Mathieu Giorgino
Ralph Matthes Martin Strecker

Université Paris-Est Créteil

15/05,/2012

Pointers / Graphs / Inductive Mathieu Giorgino

Context

Outline

@ Context
@ Introduction
@ Approach
@ Verification of graph transformations

Pointers / Grag Inductive Mathieu Giorgino

Context
°

Introduction

First remark

Most usual data structures are tree-shaped with several kind of
additional pointers:

Pointers / Graf Inductive Mathieu Giorgino

Context
°

Introduction

First remark

Most usual data structures are tree-shaped with several kind of
additional pointers:

@ sharing pointers -~

Pointers / Graf Inductive Mathieu Giorgino

Context
°

Introduction

First remark

Most usual data structures are tree-shaped with several kind of
additional pointers:

root pointers -

Pointers / Graf Inductive

Context
°

Introduction

First remark

Most usual data structures are tree-shaped with several kind of
additional pointers: J

o father pointers -~

Pointers / Graf Inductive Mathieu Giorgino

Context
°

Introduction

First remark

Most usual data structures are tree-shaped with several kind of
additional pointers:

@ sharing pointers -~
@ root pointers -*
o father pointers -~

Pointers / Graf Inductive Mathieu Giorgino

Context
°

Introduction

First remark

Most usual data structures are tree-shaped with several kind of
additional pointers:

@ sharing pointers -~
@ root pointers

o father pointers

H ,D
o ... /

S BoOa Sad

For numerous algorithms, different views on data-structures can be
used for the verification

Pointers /

Graphs / Inductive Mathieu Giorgino

Context
®00

Approach

Verification

Objective

Generate efficient and verified programs
(with pointers and/or mutable structures)

Safe code generation

Abstract Language Imperative langage

@ Arborescent data structure o Efficient :
+ pointers e Sharing

o Properties verified by o Mutability
induction @ Same properties

Pointers / Graphs / Inductive Mathieu Giorgino

Context
oeo

Approach

General frame

lsabelle/HOL | ~ Isabelle/HOL Scala
theory extraction code
Imperative HOL
theory

Pointers / Graphs / Inductive Mathieu Giorgino

Context
oeo

Approach

General frame

(Meta-)model]

?

Isabelle/HOL Isabelle/HOL
theory extraction

other classes
(Scala/Java)

~ o P

Imperative_ HOL con;p;aﬁti’bles
theory

Pointers / Graphs / Inductive Mathieu Giorgino

Context
ooe

Approach

Related work

Graph representation

@ Nodes and edges

@ Coinduction

@ Trees + pointers:

PALE [MSO01]

Term-graph rewriting in Tom using relative positions [BB08]
Locally nameless encoding of lambda-terms [Cha09]

B+ trees functional representation with pointers [MM10]

@ Proofs on raw heap and pointers

@ Hoare (Separation) Logic [Rey02]

A

Pointers / Graphs / Inductive Mathieu Giorgino

Context
°

Verification

Case studies - Overview

@ Arbitrary rooted graph (with outgoing arity < 2)
@ High mutability

@ Proof by simulation

e LOPSTR'2010 [GSMP10]

21D]D)
@ Rooted acyclic graph (shared tree)

@ References comparisons
@ Direct proof
e TAAPSD’2010 [GS10], FoVeO0OS'2011 [GS11]

Pointers / Graphs / Inductive Mathieu Giorgino

Schorr-Waite

Outline

© Schorr-Waite
@ Demo
@ Description
@ Verification

Pointers / Graph

Pointers

Schorr-Waite
.

Schorr-vaite Algorithm |

3
e
Y
¢ v
YN Y
PR
v v e
vy
v N
« ‘e 'S
2 3 v w
s v v
X v P W
T
“
{n,
v

o
TN
‘e

YOO N

RS . %
b3 o ¢ ®

p' o, -

Wy

v v
v o v R

v v e
v v e

o

Step W
Finish SW.

Reconstruct
[Ctayour

[lAgar

¥ draw

[draw nuils

2grida0,10) ~

Graphs / Inductive

Mathieu Giorgino

Schorr-Waite
(1]

Description

Algorithm features

Purpose

e Marking graphs without using more space (stack, ...)

@ Traversing a tree by terminal recursivity and without stack

Garbage collector, case study...

o Modification of the graph pointers to store the path to the
root

@ 2 variables containing the pointers :

e t: to the current node
e p: to the previously visited node

Pointers / Graphs / Inductive Mathieu Giorgino

Schorr-Waite
oe

Description

Steps : Push

push

—@ @

Pointers / Grapl Inductive Mathieu

Schorr-Waite
oe

Description

Steps : Swing

L p p R

swing

Pointers / Graphs / Inductive Mathieu Giorgino

Schorr-Waite
oe

Description

Steps : Pop

Pointers / Grag Inductive

pop

Schorr-Waite
®000

Verification

Proof by simulation

sw-tr (p, t) J

x
1
1
I config-alloc-in-state
1
1
1

[]
sw-tr
(P 1)
<
1
(X J !
I config-alloc-in-state
1
1
I 1
VS, S
(!) sw-impl-tr
1 €1
1 1

Inductive

runST (sw-impl-tr vs) s

Mathieu Gior

Schorr-Waite
0

Verification

Choosing the spanning tree: Example with 2 possibility

Verification

The wrong one!

Verification

The wrong one!

Verification

The wrong one!

Schorr-Waite
ooeo

Verification

The wrong one!

swing swing

Pointers / Graphs / Inductive Mathieu Giorgino

Schorr-Waite
ooeo

Verification

The wrong one!

Pointers / Graphs / Inductive

Mathieu Giorgino

pop

Verification

The good one!

Verification

The good one!

Verification

The good one!

Verification

The good one!

push push

Verification

The good one!

swing swing

Outline

© BDD

@ Description
@ Verification

Pointers / Graph

Description

Demo

Pointers

Grapt

[500 Construction |

v Layout

Be

(LA(2A(3A(4A(5A6))))

e
)]
Focomeass -
vt s -

Inductive

Description

Sharing

We add references to represent sharing. They also allow to add
mutable content in the nodes.

0 nbrefs = 0

1 nbrefs = 0

2 nbrefs = 0

nbrefs = 0
3

nbrefs = 1
4

5 nbrefs = -

Pointers / Grag Inductive Mathieu Giorgino

Description

build

primrec build ::
v expr = (bool, v) rtree Heap

where

build (Var i) = do{

cf < constLeaf False;

ct + constLeaf True;

mk i cf ct

}
| build (Const b) = (constLeaf b)
| build (BExpr bop el e2) = do{

nl < build el;

n2 < build e2;

app bop (n1, n2)

build

v

/5

Pointers

/ Graphs / Inductive

Mathieu Giorgino

Description

e

function app :
(bool = bool = bool) S, ,
= ((bool, 'v) rtree * (bool, 'v) rtree) ,/
= (bool, 'v) rtree Heap) Il\ i 2 2
where / \ RN K
app bop (n1, n2) = do { ! v L/’/\\\J ¢
if tpair is-leaf (n1, n2) then ! app < ~ app
constLeaf (bop (leaf-val n1) (leaf-val n2)) \ } }
else do { | 4 4
let ((11, h1), (12, h2)) = |
select split-lh dup (n1, n2); '
| < app bop (11, 12); AN N »
h < app bop (h1, h2); N N, \//
mk (varOfLev (min-level (n1, n2))) | h TN mk
} |
} v

Pointers / Graphs / Inductive Mathieu Giorgino

Description

Memoization and Garbage Collection

Memoization

Records previous computations results to reuse them

@ little change in functions and proofs

Garbage collection

Removes no more used BDDs from the maximal sharing table

@ several reference counter mutations in functions and proofs

@ weakening of an invariant

N

Pointers / Graphs / Inductive Mathieu Giorgino

Verification

Main theorem & benchmarks

Equivalent expressions construct the same BDD
lemma build-correct: [Vt € trees s1 U trees s2. robdd-refs t;

wf-heap s1; effect (build el) sl s1’t1;
wf-heap s2; effect (build e2) s2 s2' t2]
— (interp-expr el = interp-expr e2) <— struct-equal (t1, t2)

10*

time (ms)

102

Pointers

/ Grag

Urquhart benchmark

Pigeonhole benchmark

10*

102

| |
0 1,000 2,000

variable number

Inductive

pigeon number

Mathieu Giorgino

—

——

—e—

Isabelle — Scala

Scala

JavaBDD (10°)

—a— JavaBDD (5 x 10%)

Conclusion

Outline

@ Conclusion

Pointers / Grag Mathieu Giorgi

Conclusion

Conclusion

Approach

Representing graphs as (trees 4 pointers) to verify transformations

Schorr-Waite
@ Arbitrary rooted graph (with outgoing arity < 2)

e High mutability / Proof by simulation

@ Rooted acyclic graph (shared tree)

@ References comparisons / Direct proof

Pointers / Graphs / Inductive Mathieu Giorgino

Conclusion

Conclusion

Approach

Representing graphs as (trees 4 pointers) to verify transformations

Schorr-Waite
@ Arbitrary rooted graph (with outgoing arity < 2)

e High mutability / Proof by simulation

@ Rooted acyclic graph (shared tree)

@ References comparisons / Direct proof

Thanks for your attention

Pointers / Graphs / Inductive Mathieu Giorgino

Conclusion

[§] Emilie Balland and Paul Brauner.
Term-graph rewriting in Tom using relative positions.
In lan Mackie, editor, 4th International Workshop on
Computing with Terms and Graphs TERMGRAPH 2007
ENTCS, volume 203 of ENTCS, pages 3-17, Braga Portugal,
2008. ELSEVIER.

3 Arthur Charguéraud.
The locally nameless representation.
Unpublished.
http://arthur.chargueraud.org/research /2009 /In/, July 20009.

[§ Mathieu Giorgino and Martin Strecker.
Bdds verified in a proof assistant (preliminary report).
In A.V. Anisimov and M.S. Nikitchenko, editors, Proc.
TAAPSD, Univ. Taras Shevchenko, Kiev, 2010.

[§ Mathieu Giorgino and Martin Strecker.

Pointers / Graphs / Inductive Mathieu Giorgino

Conclusion

Towards the verification of efficient bdd algorithms.
In Formal Verification of Object-Oriented Software
(FoVeOOS), 2011.

[Mathieu Giorgino, Martin Strecker, Ralph Matthes, and Marc
Pantel.
Verification of the Schorr-Waite algorithm — From trees to
graphs.
In Logic-Based Program Synthesis and Transformation
(LOPSTR), 2010.
http://www.irit.fr/~Mathieu.Giorgino/Publications/
GiSt2010SchorrWaite.html.

[§ J. Gregory Malecha and Greg Morrisett.
Mechanized verification with sharing.
In ICTAC, pages 245-259, 2010.

[4 Anders Mgller and Michael |. Schwartzbach.
The pointer assertion logic engine.

Pointers / Graphs / Inductive Mathieu Giorgino

http://www.irit.fr/~Mathieu.Giorgino/Publications/GiSt2010SchorrWaite.html
http://www.irit.fr/~Mathieu.Giorgino/Publications/GiSt2010SchorrWaite.html

Conclusion

In Proc. ACM PLDI, pages 221-231, 2001.

[§ John C. Reynolds.
Separation logic: A logic for shared mutable data structures.
In LICS '02: Proceedings of the 17th Annual IEEE Symposium
on Logic in Computer Science, pages 55—74, Washington, DC,
USA, 2002. IEEE Computer Society.

Pointers / Graphs / Inductive Mathieu Giorgino

	Context
	Introduction
	Approach
	Verification of graph transformations

	Schorr-Waite
	Demo
	Description
	Verification

	BDD
	Description
	Verification

	Conclusion

