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Research programme

Preliminary notes about Parallel Static Cost Analysis

1 Static performance analysis: prediction of run time of shapely skeletal
parallel programs.

2 Model: Bounded Synchronous Parallelism (BSP), across various
architectures.

3 Calculus of skeletons: Bird–Meertens Formalism (BMF).

Notes

formalism foundational data structures

BSP arrays
BMF lists

skeletons ⊂ parallel patterns
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Research programme

Research programme

1 Develop an equational theory of patterns of parallelism supporting
program refinement.

2 Develop a cost model that supports comparisons between refinements
of a program.

3 Develop an algorithm for cost-driven optimal refinement search.
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List-based formalisation

Theory of lists: Bird–Meertens Formalism

Example (Maximum segment sum)

The maximum of the sums of all the segments of a given list:

mss
= { definition of mss }

max/ · +/∗ · segs
= { definition of segs }

max/ · +/∗ · ++/ · tails ∗ · inits
= { distributivity of map and fold }

max/ · (max/ · +/∗ · tails)∗ · inits
= { Horner’s rule where x�y = max (x + y) 0 }

max/ · �/L0 ∗ · inits
= { defining property of left scan }

max/ · �//L0
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List-based formalisation

Where to add cost information to the theory of lists

Problem (Two different intermediate structures of fold)

/ : (a→ b→ a)→ a→ [b]→ a

1 (zip +)/ : [a]→ [[b]]→ [a]
pointwise addition of lists; intermediate sums have the same size.

2 ++/ : [a]→ [[b]]→ [a]
append of all the given lists; intermediate lists are the same or larger.

Example (Shapes of functions and data)

#(zip +) #x #y
def
= if #x = #y then #x else error

#++ #x #y
def
= ?
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List-based formalisation

Connection with bulk synchronous parallelism

Definition

Shapely program A program is shapely if the shape of its result is
determined by the shapes of its inputs.

Shape analysis of a non-shapely program F :

1 Decompose F into a sequence of subprograms in which all
intermediate shapes can be determined but not that of the result.
Try to match subprograms with barrier syncs and data redistributions.

2 Determine shapes at the beginning of each subprogram (reshaping
point).
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Shapely cost analysis

Shaped language

Type system:

atomic types δ ::= int | bool | float | . . .
array types α ::= X | δ | [α]

shape types σ ::= δ̃ |#α

data types τ ::= α | σ
phrase types θ ::= U |#U | exp τ | var α | comm | θ → θ

type schemes φ ::= θ | ∀α X .φ | ∀θ U.φ

Terms:
t ::= x | c | λ x .t | t t | t where x = t
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Shapely cost analysis

Examples of shapes

m×n matrix of integers:

[m,n]
˜int : #[int]

vector of length m of vectors of length n:

[[m,n]
˜int ] : #[[int]]

shape of a map:

#map = λ f a. extendShape a (f (entryShape a))

where extendShape aδ̃ bδ̃ = [a,b]δ̃ .
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Shapely cost analysis

Parallelisation of a shaped program

Specify a distribution of data structures across processors, that is,
match the shape of data with the shape of the processor network.

Definition (Distribution / implicit parallelism)

A (simple) distribution for an array of type [a] is an array of type [[a]]
where

the outer shape: a virtual array of processors;

the inner shape: the blocks assigned to each of the processors.
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Shapely cost analysis

Cost analysis

The type cost = ˜float forms a commutative monoid under addition.

Definition (Cost of a superstep in the BSP model)

cost of a superstep = maxWi + maxhi ∗g + L
where

Wi : local processing time on processor i ,

hi : number of packets sent or received by the processor i ,

g : marginal cost of sending a packet (communication throughput /
processor throughput),

L: cost of barier synchronisation

BSP hardware parameters are (p,L,g) of type H = size×cost×cost.
The cost of a function f : [a]→ [b] is given by a function

#f : #[a]→#[b]×(H → cost)
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Shapely cost analysis

Cost monad

The functor Mθ = θ×(H → cost) with pointwise operations is a
commutative monad.

M0(exp τ) = exp #τ

M0(θ1×θ2) = M0(θ1)×M0(θ2)

M0(θ1→ θ2) = M0(θ1)→M(M0(θ2))

The cost of t : θ is c(t) : MM0(θ), for example:

c(map) : M(α →Mβ )→M([α]→ [β ])
c(map) = 〈 λ f . 〈 λ a.〈 #map (fst · f ) a,

λ h. (snd (f (entryShape a)) h)∗b(a,h)〉,
λ h. 0〉,

λ h. 0〉

where b(a,h) is the size of the blocks of a with respect to the hardware h.
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Pattern calculus

Patterns of data and computations: first approximation

d ::= data structure
x̂ matchable symbol
d t compound data

c ::= computation
x̂ matchable symbol
c → t compound computation
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Pattern calculus

Pattern calculus

t ::= untyped term
x variable symbol
x̂ matchable symbol
t t application
[θ ] t→ t case

matching {u/[θ ] p}
match reduction ([θ ] p→ s) u {u/[θ ] p} s
Leibniz quality eq = λ x . ([] x → true | λ y . false)

Some notation:
λ x . t =

def
[x ] x̂ → t

car =
def

[x ,y ] x̂ ŷ → x
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Pattern calculus

Divide and conquer in the pattern calculus

Views (additional matching clause):

{u/[θ ] view f p}= {f u/[θ ] p}

dc divide combine conquer condition =
| [x ] condition x̂ → conquer x
| [x ,y ] view divide (x̂ , ŷ)→ combine (f x) (f y)
where f = dc divide combine conquer condition
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Pattern calculus

Remarks on implementations-in-progress

The pattern calculus is capable of complementing BMF in certain
important points.

It is a computationally well-behaved formalism (progress, confluence)
and therefore is tangible to interactive theorem proving.

The approach of the shape calculus where shape types and shape
functions form a distinct syntactic category can be taken further and
applied to pattern calculus.

We can use matching and substitution in many novel ways compared
to the standard FP, in particular, instead of dependent types.

To be continued.
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