
A Short Introduction to
Constructive Algorithmics

Kiminori MATSUZAKI

(Kochi University of Technology)

1

Constructive Algorithmics
Constructive Algorithmics:
“Methods for calculating programs from their
specifications, and the design of notations for such
calculation; also, the investigation of software support
for the calculational process.”

http://www.cs.auckland.ac.nz/research/groups/
CDMTCS/docs/ca.html

2

Outline
Notations

BMF (Bird-Meertens Formalism)
Lists and their operations

Program Calculation (Program Transformation)
Homomorphisms
Transformation rules
Calculation Example

Extended Topics

3

Notations

4

Functions
Function application is written without brackets

means

Function are curried and associate to the left
means

Function composition

Binary operators can be sectioned

5

List
Lists are finite sequence of values of the same type.

Any list can be constructed with the following
two operations:

Nil: An empty list
Denoted by []

Cons: Put an element before a list
Denoted by a : as

Example: [1, 2, 3] = 1 : (2 : (3 : []))

We may call such a list as “cons list”

6

Join List
Another way to construct a list

We use three operations to construct a list
Nil: An empty list

Denoted by []
Singleton: A list with a single element

Denoted by [a] or [.] a
Join: Concatenation of two smaller lists

Denoted by
Concatenation is associative

7

Map
Map (denoted by *) takes a function and a list, and
applies the function to each element of the list

Informally:

8

Reduce
Reduce (denoted by /) takes an associative operator
and a list, and collapse the list into a value with the
operator.

Informally:

9

Directed Reduce
Left-to-right reduce (denoted by) is a reduce-like
operation, but it can take non-associative operator.

Informally:

We can consider right-to-left reduce

10

Accumulation (Scan)
Left-accumulate (denoted by) takes an operator
and a list, and computes on the list by accumulating
the values with the operator.

Informally:

11

Program Calculation

12

Idea of Program Calculation
Starting from a (mathematical) specification,
we derive a program by applying transformation rules

Concise and clear specification
Transformation rules proved to be correct
Systematic / mechanical / automatic derivation

13

P0 P1 Pk

…

Specification
- Concise
- Clear
- Correct

Transformation Rules

Derived Program
- Efficient
- Correct

Homomorphism
A function h defined in the following form is called
homomorphism.

It maps a monoid ([α], ++, []) to (β, ,)

Property: h is uniquely determined by and

14

Homomorphism Theorems
First homomorphism theorem:

Every homomorphism can be written as the
composition of a map and a reduce.
hom () f = (/) . (f *)

Third homomorphism theorem:
If a function h can be defined as

h ([a] ++ x) = a h x
h (y ++ [b]) = h y b

then, h is a homomorphism.
This theorem also works as a parallelization theorem.
[Morita et al., PLDI 2007]

15

Rules (1)
Horner’s rule:

E.g.

Distributivity over and is important

Promotion:

16

Rules (2)

Accumulation:

17

Example (1)
The maximum segment sum problem:
Compute the maximum of sums of all segments
of a given sequence of numbers

Concise and clear solution (specification)

But, slow: O(n3)

18

Example (2)
Calculating a linear-time algorithm

19

Extended Topics

20

List Other data structures
Matrix (2D array)

Data is constructed with Singleton, JoinX, JoinY
Some property is needed on JoinX/JoinY

Binary tree
Data is constructed with Leaf and Node
Node :: a -> (Tree a) -> (Tree a) Tree a

We can apply generic-programming technique
(category-theoretic approach) to formalize other
data structures (e.g., rose trees)

21

Relations
Extend functions into relations

Studied by the group of Richard Bird (Oxford Univ.)

Formalization of non-deterministic computations

Example: Thinning theorem
Formalization of optimization problems (dynamic
programming / approximation)
[Mu et al., WGP 2010.]

22

Optimization Problems
Derive a dynamic-programming algorithm from the
problem specification

Use algebraic properties of operators

Examples
Maximum marking problem (Extension of mss)

Sasano et al. ICFP 2000
Generic maximum marking problem

Emoto et al. ESOP 2012

23

Parallel Programming
Use of patterns as algorithmic skeletons

SkeTo parallel skeleton library
Data structures: lists, matrices, and trees
Skeletons: map, reduce, scan (and others)

Third homomorphism theorem for parallelization
A tool for parallelization [Morita et al. PLDI 2007]
Parallelization for tree problems
[Morihata et al. POPL 2009]

24

Tools
Fusion optimization

Strong optimization in Haskell
Warm fusion: a powerful fusion rule based on list
homomorphism
Stream fusion: a structure-generic fusion mechanism

Yicho system
A tool for program calculation
Hylomorphism (extension of homomorphism)
[Yokoyama et al. APLAS 2002]

25

Conclusion
3 Important Aspects of Constructive Algorithmics

Notations and patterns
Bird-Meertens Formalism (BMF)
Functional modeling of

Program Calculations
Systematically deriving programs from the specification
Theorems for homomorphisms

Supporting Tools
For systematic/automatic derivation of programs
Domain-specific tools for program derivation

26

References
Lecture notes about constructive algorithmics
by Zhenjiang Hu (NII Japan)

http://research.nii.ac.jp/~hu/pub/teach/pm06/CA[1-4].pdf

27

	A Short Introduction to�Constructive Algorithmics
	Constructive Algorithmics
	Outline
	Notations
	Functions
	List
	Join List
	Map
	Reduce
	Directed Reduce
	Accumulation (Scan)
	Program Calculation
	Idea of Program Calculation
	Homomorphism
	Homomorphism Theorems
	Rules (1)
	Rules (2)
	Example (1)
	Example (2)
	Extended Topics
	List  Other data structures
	Relations
	Optimization Problems
	Parallel Programming
	Tools
	Conclusion
	References
	スライド番号 28
	Algorithmic Skeletons [Cole 89]
	Parallel Skeleton Library: SkeTo
	Agenda
	Design
	Constructive Algorithmics
	Parallel Data Structures
	Parallel List
	Parallel Matrix
	Parallel Tree
	Skeletons (1)
	Skeletons (2)
	Scan
	Implementation
	A Sample Code with SkeTo
	Implementation Design
	Scan (3-phase Implementation)
	Fusion Optimization
	Loop Fusion over Skeletons (1)
	Loop Fusion over Skeletons (2)
	Application
	BiCGStab Method
	Target Application
	Two Approaches
	Mapping 3D array on (Distributed) List
	Unsatisfactory Fusion Optimization
	Further Optimization
	On PC Cluster with Multicore-CPUs
	Recent Topics
	Conclusion
	References

